K-近邻算法

K-近邻算法是一种基于距离度量的分类方法,具有精度高、对异常值不敏感的优点,但计算和空间复杂度较高。适用于数值型和标称型数据。算法通过比较新数据与训练样本集中的数据特征,选取最相似的K个样本,根据它们的分类标签进行预测,通常K小于等于20。分类过程包括计算距离、排序、选取最近邻、确定类别频率等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

K-近邻算法采用测量不同特征值之间的距离方法进行分类。
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签, 即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

过程

对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k个点;
(4)确定前K个点所在类别的出现频率;
(5)返回前K个点出现频率最高的类别作为当前点的预测分析。
程序清单如下:

def classify0(inX, dataSet, la
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值