#include <cstdio>
#include <vector>
#include <algorithm>
#include <map>
struct node{
int key;
int minHeight;
int maxHeight;
};
int K, N;
bool flag;
node* root;
std::vector<int> postorder, inorder;
std::map<int, int> mp;
node* buildTree(int inL, int inR, int postL, int postR){
if(inL == inR){
return nullptr;
}
node* tmp = new node;
tmp->key = postorder[postR - 1];
int loc = mp[postorder[postR - 1]];
int minLeft, maxLeft, minRight, maxRight;
node* left = buildTree(inL, loc, postL, postL + loc - inL);
node* right = buildTree(loc + 1, inR, postL + loc - inL, postR - 1);
if(left){
minLeft = left->minHeight;
maxLeft = left->maxHeight;
} else{
minLeft = 0;
maxLeft = 0;
}
if(right){
minRight = right->minHeight;
maxRight = right->maxHeight;
} else{
minRight = 0;
maxRight = 0;
}
tmp->minHeight = std::min(minLeft, minRight) + 1;
tmp->maxHeight = std::max(maxLeft, maxRight) + 1;
if(tmp->maxHeight > 2 * tmp->minHeight){
flag = false;
}
return tmp;
}
int main(){
scanf("%d", &K);
for(int i = 0; i < K; ++i){
scanf("%d", &N);
postorder.resize(N);
for(int j = 0; j < N; ++j){
scanf("%d", &postorder[j]);
}
inorder = postorder;
sort(inorder.begin(), inorder.end());
for(int j = 0; j < N; ++j){
mp[inorder[j]] = j;
}
flag = true;
root = buildTree(0, N, 0, N);
printf("%s\n", flag ? "Yes" : "No");
}
return 0;
}
题目如下:
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
| | |
---|---|---|
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is possible to color the nodes and turn it into a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤10) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary search tree. The second line gives the postorder traversal sequence of the tree. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in a line Yes
if the given tree can be turned into a legal red-black tree, or No
if not.
Sample Input:
3
9
1 4 5 2 8 15 14 11 7
9
1 4 5 8 7 2 15 14 11
8
6 5 8 7 11 17 15 10
Sample Output:
Yes
No
Yes