数据批处理(队列方式)

数据批处理(队列方式)

public class DataProcessor {

    private static final int THREAD_COUNT = 4;
    private static final int QUEUE_SIZE = 10;

    private LinkedBlockingQueue<Data> queue = new LinkedBlockingQueue<>(QUEUE_SIZE);

    public DataProcessor() {
        ExecutorService executor = Executors.newFixedThreadPool(THREAD_COUNT);

        for (int i = 0; i < THREAD_COUNT; i++) {
            executor.execute(() -> {
                try {
                    while (true) {
                        Data data = queue.take();
                        processData(data);
                    }
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            });
        }
    }

    public void addData(Data data) {
        try {
            queue.put(data);
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        }
    }

    private void processData(Data data) {
        // Process data here
        System.out.println("Processing data: " + data);
    }

    public static void main(String[] args) {
        DataProcessor processor = new DataProcessor();

        // Add data to be processed
        for (int i = 0; i < 20; i++) {
            Data data = new Data("Data " + i);
            processor.addData(data);
        }
    }

    static class  Data {
        private String value;

        public Data(String value) {
            this.value = value;
        }

        @Override
        public String toString() {
            return value;
        }
    }

}

参考网址:
一:https://blog.csdn.net/zhizhengguan/article/details/86551270
二:https://blog.csdn.net/qq_41128049/article/details/134442487

数据批处理入库(线程池方式)

@Configuration
public class ThreadPoolsConfiguration {

    //线程池的核心线程数量
    private static final int HANDLER_CORE_POOL_SIZE = 2;
    //线程池的最大线程数
    private static final int HANDLER_MAX_POOL_SIZE = 10;
    //阻塞队列的容量
    private static final int HANDLER_QUEUE_CAPACITY = 5000;
    //当线程数大于核心线程数时,多余的空闲线程存活的最长时间()
    private static final int HANDLER_KEEP_ALIVE_TIME = 1;

    @Bean(name = {"cardRecordSyncExecutor"})
    public Executor cardRecordSyncExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(HANDLER_CORE_POOL_SIZE);
        executor.setMaxPoolSize(HANDLER_MAX_POOL_SIZE);
        executor.setQueueCapacity(HANDLER_QUEUE_CAPACITY);
        executor.setKeepAliveSeconds(HANDLER_KEEP_ALIVE_TIME);
        executor.setThreadNamePrefix("cardRecordSyncExecutor-");
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardOldestPolicy());
        executor.initialize();
        return executor;
    }
}

    @Resource(name = "cardRecordSyncExecutor")
    private Executor executor;
    
    public void reSync() {
        // 超过半小时状态为1的数据状态重置0
        Date date = DateUtil.getAddMinuteDate(new Date(), -30);
        baseMapper.resetTimeoutStatus(date);
        // 查询推送失败且失败次数小于6次的
        List<CardRecordSync> list = baseMapper.listFail();
        if (list.isEmpty()) {
            return;
        }
        log.info("待处理补推记录数size={}", list.size());
        List<List<CardRecordSync>> partition = Lists.partition(list, 100);
        for (List<CardRecordSync> syncs : partition) {
            executor.execute(() -> {
                List<Long> ids = syncs.stream().map(CardRecordSync::getId).collect(Collectors.toList());
                // 状态变更为处理中
                EntityWrapper<CardRecordSync> wrapper = new EntityWrapper<>();
                wrapper.in("ID", ids);
                CardRecordSync po = new CardRecordSync();
                po.setStatus(CardRecordSyncStatus.PUSHING.getStatus());
                baseMapper.update(po, wrapper);

                syncs.forEach(record -> {
//                    boolean flag = thirdService.cardRecordSync(record.getSyncParam());
                    DataSyncResult dataSyncResult = thirdService.cardRecordSync(record.getSyncParam());
                    boolean flag = dataSyncResult.isDataSyncSuc();
                    int status = CardRecordSyncStatus.FAIL.getStatus();
                    if (flag) {
                        status = CardRecordSyncStatus.SUCCESS.getStatus();
                    }
                    baseMapper.updateStatusDescById(dataSyncResult.getDataSyncSucDesc(),status, record.getId());
                });
            });
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值