1、背景:
2025年1月,DeepSeek 正式发布 DeepSeek-R1 推理大模型。DeepSeek-R1 因其成本价格低廉,性能卓越,在 AI 行业引起了广泛关注。DeepSeek 提供了多种使用方式,满足不同用户的需求和场景。本地部署在数据安全、性能、定制化、成本、离线可用性和技术自主性方面具有显著优势。
本文详细讲解 基于 Ollama+Docker+OpenWebUI 的本地windows部署流程
2、环境需求:
1.1 硬件需求:
DeepSeek R1 本地部署的硬件需求如下:
1.2 软件依赖:
DeepSeek R1 本地部署的软件依赖包括操作系统、容器化工具、编程语言、深度学习框架、数据库、消息队列、Web 服务器、GPU 加速工具、版本控制、包管理工具、监控与日志工具以及安全工具。
本教程采用 Windows server 2016 64位操作版本、Python 3.8 版本、PyTorch 1.7 版本。
3、Ollama 下载与安装:
1.1 Ollama 的下载:
Ollama 是一个开源的本地模型运行工具,可以方便地下载和运行各种开源模型,如 Llama、Qwen、DeepSeek 等。Ollama 提供高效、灵活的大模型部署和管理解决方案,可以简化模型的部署流程。支持macOS、Linux、Windows 操作系