keras merged model

本文介绍了一种使用Keras框架实现的手写数字识别系统。该系统通过合并三个不同分支的卷积神经网络来提高识别准确性。每个分支针对输入图像的不同特征进行训练,最终通过全连接层整合所有特征进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

keras merged model
可参考网址
http://www.cnblogs.com/qianboping/p/6509794.html
https://www.kaggle.com/nikosias/keras-merged-model

import numpy as np
import pandas as pd

from keras.optimizers import SGD
from keras.models import Sequential
from keras.layers import Merge
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.layers.core import Dense, Activation, Dropout, Reshape, Flatten
from keras.utils.np_utils import to_categorical

data = pd.read_csv('../input/train.csv')
images = data.iloc[:,1:].values
images = images.astype(np.float)
images = np.multiply(images, 1.0 / 255.0)
print ('Train\'s shape =>({0[0]},{0[1]})'.format(images.shape))

labelsFlat = data[[0]].values
classes = len(np.unique(labelsFlat))
labelsCategorical = to_categorical(labelsFlat,classes)
labelsCategorical = labelsCategorical.astype(np.uint8)
print ('Train\'s classes =>({0})'.format(classes))

test = pd.read_csv('../input/test.csv').values
testX = test
testX = testX.astype(np.float)
testX = np.multiply(testX, 1.0 / 255.0)
print ('Test\'s shape =>({0[0]},{0[1]})'.format(testX.shape))

leftBranch = Sequential()
leftBranch.add(Reshape((1,28,28), input_shape=(784,)))
leftBranch.add(Convolution2D(classes, 3, 1, activation='relu'))
leftBranch.add(MaxPooling2D((2, 2), strides=(2, 2)))
leftBranch.add(Flatten())

rightBranch = Sequential()
rightBranch.add(Reshape((1,28,28), input_shape=(784,)))
rightBranch.add(Convolution2D(classes, 1, 3, activation='relu'))
rightBranch.add(MaxPooling2D((2, 2), strides=(2, 2)))
rightBranch.add(Flatten())

centralBranch = Sequential()
centralBranch.add(Reshape((1,28,28), input_shape=(784,)))
centralBranch.add(Convolution2D(classes, 5, 5, activation='relu'))
centralBranch.add(MaxPooling2D((2, 2), strides=(2, 2)))
centralBranch.add(Flatten())

merged = Merge([leftBranch, centralBranch, rightBranch], mode='concat')

model = Sequential()
model.add(merged)
model.add(Dense(28*3, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='relu'))
model.add(Dense(input_dim=10, output_dim=classes))
model.add(Activation("softmax"))

sgd = SGD(lr=0.5, momentum=0.0, decay=0.0, nesterov=False)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit([images,images,images], labelsCategorical,
            nb_epoch=5, batch_size=100, verbose=2)

yPred = model.predict_classes([testX,testX,testX])

np.savetxt('dr.csv', np.c_[range(1,len(yPred)+1),yPred], delimiter=',',
            header = 'ImageId,Label', comments = '', fmt='%d')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值