一、Tensorflow介绍
tenroflow是Google开源软件库,为机器学习工程中的问题提供了一整套解决方案。
二、Pycharm 介绍
PyTorch是一个由Facebook开发的深度学习框架,使用动态计算图来进行张量计算和自动微分。这个特性使得模型的构建更灵活,更容易调试,并且能够支持更复杂的模型。
三、安装miniconda3
3.1、下载miniconda3
3.2、直接按提示安装miniconda3
四、安装Tensorflow和PyTorch
4.0、配置.condarc
channels:
- defaults
show_channel_urls: true
ssl_verify: false
default_channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
4.1、创建dlCPU虚拟环境
conda create -n dlCPU python=3.7
4.2、激活环境
conda activate dlCPU
C:\Users\主机名>conda activate dlCPU
(dlCPU) C:\Users\主机名>
4.3、安装Tensorflow
pip install tensorflow-cpu==2.10.0 -i https://pypi.douban.com/simple/
或者
conda install -c free tensorflow
pip install tensorflow-gpu==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
4.4、验证Tensorflow
在当前虚拟环境下,启动python后,输入import tensorflow as tf 验证tensorflow是否安装成功
(dlCPU) C:\Users\主机名>python
Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.__version__
'2.6.0'
>>>
4.6、安装scikit-learn
conda install SciPy
conda install NumPy
conda install scikit-learn
4.7、安装PyTorch
进入PyTorch
4.8、安装pyTorch
conda install pytorch torchvision torchaudio cpuonly -c pytorch
4.9、验证pyTorch
输入python
(dlCPU) C:\Users\主机名>python
Python 3.7.16 (default, Jan 17 2023, 16:06:28) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
False
>>> torch.is_available()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'torch' has no attribute 'is_available'
>>> torch.__version__
'1.13.1'
五、配置Pycharm
import tensorflow as tf;
import torch;
import numpy as np;
arr=np.ones((6,6));
print("arr的数据类型为:"+str(arr.dtype))
t=torch.tensor(arr)
print(t)
print(tf.__version__);
这样就安装成功了