StringBuilder和StringBuffer的使用

通过非官方试验测试,StringBuilder和StringBuffer的测试总结如下:
1. 为了获得更好的性能,在构造 StirngBuffer 或 StirngBuilder 时应尽可能指定它的容量。当然,如果你操作的字符串长度不超过 16 个字符就不用了。

2. 相同情况下使用 StirngBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。而在现实的模块化编程中,负责某一模块的程序员不一定能清晰地判断该模块是否会放入多线程的环境中运行,因此:除非你能确定你的系统的瓶颈是在 StringBuffer 上,并且确定你的模块不会运行在多线程模式下,否则还是用 StringBuffer 吧 J

3. 用好现有的类比引入新的类更重要。很多程序员在使用 StringBuffer 时是不指定其容量的(至少我见到的情况是这样),如果这样的习惯带入 StringBuilder 的使用中,你将只能获得 10 %左右的性能提升(不要忘了,你可要冒多线程的风险噢);但如果你使用指定容量的 StringBuffer ,你将马上获得 45% 左右的性能提升,甚至比不使用指定容量的 StirngBuilder 都快 30% 左右。
在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值