原式 = max 0 ≤ x ≤ 1 x e − x 2 原式=\max _{0\leq x\leq 1} xe^{-x^{2}} 原式=0≤x≤1maxxe−x2
这里我的思路是:定义
u
(
x
)
=
x
e
−
x
2
,
f
(
x
)
=
x
,
g
(
x
)
=
e
−
x
2
u(x)=xe^{-x^{2}},f(x)=x,g(x)=e^{-x^{2}}
u(x)=xe−x2,f(x)=x,g(x)=e−x2
∴
u
(
x
)
=
f
(
x
)
g
(
x
)
,
\therefore u(x)=f(x)g(x),
∴u(x)=f(x)g(x),
u
′
(
x
)
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
u'(x)=f'(x)g(x)+f(x)g'(x)
u′(x)=f′(x)g(x)+f(x)g′(x)
则求出u(x)的导数u’(x)时,令u’(x)=0求出极值点。
1 求导
函数定义如上。根据公式则:
u
′
(
x
)
=
[
f
(
x
)
g
(
x
)
]
′
=
f
′
(
x
)
g
(
x
)
+
f
(
x
)
g
′
(
x
)
,
u'(x)=[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x),
u′(x)=[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x),
f
′
(
x
)
=
1
,
需计算
g
′
(
x
)
f'(x)=1,需计算g'(x)
f′(x)=1,需计算g′(x)
令
v
(
x
)
=
−
x
2
,
g
2
(
x
)
=
e
x
则
令v(x)=-x^{2},g_2(x)=e^{x}则
令v(x)=−x2,g2(x)=ex则
g
(
x
)
=
g
2
(
v
(
x
)
)
,
g
′
(
x
)
=
v
′
(
x
)
g
2
′
(
v
(
x
)
)
g(x)=g_2(v(x)),g'(x)=v'(x)g_2'(v(x))
g(x)=g2(v(x)),g′(x)=v′(x)g2′(v(x))
∴
g
′
(
x
)
=
(
−
2
x
)
(
e
−
x
2
)
\therefore g'(x)=(-2x)(e^{-x^{2}})
∴g′(x)=(−2x)(e−x2)然后计算u’(x):
u
′
(
x
)
=
1
g
(
x
)
+
x
g
′
(
x
)
u'(x)=1g(x)+xg'(x)
u′(x)=1g(x)+xg′(x)
=
e
−
x
2
+
(
−
2
x
2
)
(
e
−
x
2
)
=e^{-x^{2}}+(-2x^{2})(e^{-x^{2}})
=e−x2+(−2x2)(e−x2)
=
(
1
−
2
x
2
)
(
e
−
x
2
)
=(1-2x^{2})(e^{-x^{2}})
=(1−2x2)(e−x2)
2计算
令
u
′
(
x
)
=
0
,
即
(
1
−
2
x
2
)
(
e
−
x
2
)
=
0
u'(x)=0,即(1-2x^{2})(e^{-x^{2}})=0
u′(x)=0,即(1−2x2)(e−x2)=0
这是一个乘法算式,我们可以得出,若u’(x)=0,则
(
1
−
2
x
2
)
o
r
(
e
−
x
2
)
=
0
(1-2x^{2}) or (e^{-x^{2}})=0
(1−2x2)or(e−x2)=0然而,有
e
x
>
0
(
x
∈
R
)
e^{x} > 0(x\in \R)
ex>0(x∈R)故只能是
1
−
2
x
2
=
0
1-2x^{2}=0
1−2x2=0
那么来解一下这个方程。
1公式
化为ax2+bx+c=0的形式: ( − 2 ) x 2 + 1 = 0 (-2)x^{2}+1=0 (−2)x2+1=0则 解 : x = − b ± b 2 − 4 a c 2 a 解:x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a} 解:x=2a−b±b2−4ac = 0 ± 8 − 4 = ± 2 2 4 =\frac{0\pm\sqrt{8}}{-4}=\pm\frac{2\sqrt{2}}{4} =−40±8=±422故得: ∴ x 0 = 2 2 , x 1 = − 2 2 \therefore x_{0}=\frac{\sqrt{2}}{2},x_{1}=-\frac{\sqrt{2}}{2} ∴x0=22,x1=−22
2直接解
解 : − 2 x 2 = − 1 解:-2x^{2}=-1 解:−2x2=−1 x 2 = 1 2 x^{2}=\frac{1}{2} x2=21 x = ± 1 2 x=\pm \sqrt{\frac{1}{2}} x=±21 x = ± 1 2 x=\pm\frac{1}{\sqrt{2}} x=±21 ∴ x 0 = 2 2 , x 1 = − 2 2 \therefore x_{0}=\frac{\sqrt{2}}{2},x_{1}=-\frac{\sqrt{2}}{2} ∴x0=22,x1=−22
3答案
先前得到了两个解,那么
1)根据范围判定,舍掉负根
2)代入值计算,舍掉负根
3)再次利用导数
根据范围判定舍掉负根
∵ 0 ≤ x ≤ 1 ∴ x ≠ − 2 2 \because 0\leq x\leq 1 \therefore x\neq -\frac{\sqrt{2}}{2} ∵0≤x≤1∴x=−22
代入值计算舍掉负根
函数u(x)为xe(-x方)
计算:代入x1(负根)计算
原式=
−
2
2
e
−
(
−
2
2
)
2
-\frac{\sqrt{2}}{2}e^{-(-\frac{\sqrt{2}}{2})^{2}}
−22e−(−22)2
其实不用进行太繁琐的计算。因为ex在x属R时必定大于0,则本算式结果为负。则其必定为最小值点
导数原理计算
令l1<x1,l2>x1.
例:取l1=-1,l2=0
则代入u’(x):
u
′
(
l
1
)
=
(
1
−
2
)
e
−
1
=
−
1
e
<
0
u'(l_{1})=(1-2)e^{-1}=-\frac{1}{e}<0
u′(l1)=(1−2)e−1=−e1<0
u
′
(
l
2
)
=
e
0
=
1
>
0
u'(l_{2})=e^{0}=1>0
u′(l2)=e0=1>0
∴
x
1
为极小值点
\therefore x_{1}为极小值点
∴x1为极小值点同理可证x0是极大值点
4最大值
说了这么多来计算一下
u
(
x
)
的极大值点为
x
0
=
2
2
u(x)的极大值点为x_{0}=\frac{\sqrt{2}}{2}
u(x)的极大值点为x0=22
则
max
0
≤
x
≤
1
x
e
−
x
2
=
u
(
2
2
)
\max _{0\leq x\leq 1} xe^{-x^{2}} = u(\frac{\sqrt{2}}{2})
0≤x≤1maxxe−x2=u(22)
=
2
2
e
−
(
2
2
)
2
=\frac{\sqrt{2}}{2}e^{-(\frac{\sqrt{2}}{2})^{2}}
=22e−(22)2
=
2
2
e
−
1
2
=\frac{\sqrt{2}}{2}e^{-\frac{1}{2}}
=22e−21
=
2
2
1
e
=\frac{\sqrt{2}}{2}\frac{1}{\sqrt{e}}
=22e1
∴
max
0
≤
x
≤
1
x
e
−
x
2
=
2
e
2
\therefore \max _{0\leq x \leq 1} xe^{-x^{2}}=\frac{\sqrt{2e}}{2}
∴0≤x≤1maxxe−x2=22e
完