python绘图:matplotlib和pandas的应用

在进行数据分析时,绘图是必不可少的模式探索方式。用Python进行数据分析时,matplotlib和pandas是最常用到的两个库。

1、matplotlib库的应用
准备工作如下:打开ipython,输入命令分别导入numpy和matplotlib.pylab库。

import numpy as np
import matplotlib.pylab as plt

1)创建fig
绘图第一步是创建绘图窗口fig。

fig1 = plt.figure()

2)创建subplot
在窗口上添加AxesSubplot类型的子绘图区域,一个窗口可以添加多个子绘图区。

ax1 = fig1.add_subplot(2,2,1)
ax4 = fig1.add_subplot(2,2,4)

3)subplot中绘图
调用子绘图区的方法,可以绘制点线图、频数图、散点图等常用图形。
注意:在同一个subplot中多次调用plot(),所得到的图形是相互覆盖的。

ax1.plot(np.random.randn(50).cumsum(),'k--')
ax4.hist(np.random.randn(30))

4)各类参数设置
主要关注以下几种方法:set_xlims设置坐标轴的上下限、set_ticks设置坐标刻度、set_ticklabel设置坐标标注。

ax1.set_xlim(-10,60)
ax1.set_xticks([0,20,40,60])
ax1.set_xticklabels(['a','b','c','d'])

5)清除和保存图形
用subplot的clear()方法可以清除现有的图形,用figure的savefig()保存图形到指定路径。

ax1.clear()
#windows下的路径
fig1.savefig(‘.\\test.jpg’)

2、pandas库的应用
相比于利用matplotlib库绘图,采用pandas绘图要便捷得多。参照前一部分,同样需要导入pandas、numpy库。

import pandas as pd
from pandas import Series,DataFrame
import numpy as np

1)plot方法及参数
对于Series和DataFrame类型的数据,可以直接调用两种类型对应的plot方法,绘图时自动采用索引值绘制横坐标,采用每一列数据绘制纵坐标。这里分别以两类数据为例。

se1 = Series(np.random.randn(30).cumsum())
df = DataFrame({'a':np.random.randn(30),'b':np.random.randn(30)})


参数设置很方便,在plot()方法参数列表中添加相应参数值即可。常用的有:类型kind可设置为line(线图)、bar(垂直柱状图)、barh(水平柱状图)、kde(核密度估计图),另外还有color颜色设置、linestyle线型设置、alpha设置透明度、grid设置网格等。

se1.plot(kind = 'bar', color = 'g', alpha = 0.5, grid=True)
df.plot(kind = 'bar', alpha=0.5)

2)频数图、散点图
频数图采用hist绘制即可,单幅的散点图还得依靠matplotlib库,但pandas提供多幅散点图矩阵的快速绘图方法。

se1.plot(kind = 'bar', color = 'g')
#对角线上图形设置为核密度图
pd.scatter_matrix(df, diagonal='kde')

3)清除和保存图形
有时候,我们希望清除掉当前图形或者干脆关闭绘图窗口。可以采用figure的clear()方法清除图形,采用matplotlib.pylab的close()方法则能够直接关闭图形窗口。

df.plot()
#清除绘图
_.get_figure().clear()
#关闭窗口
plt.close()

3、python绘图的未来
Python同时具备强大的数据分析功能和Web开发功能,未来绘图的趋势将是更加紧密的联系数据分析和Web发布功能,所有绘制的图形应当能够方便的在网页上发布。数据分析人员和网页开发人员的工作耦合将会更加紧密。






安装Docker安装插件,可以按照以下步骤进行操作: 1. 首先,安装Docker。可以按照官方文档提供的步骤进行安装,或者使用适合您操作系统的包管理器进行安装。 2. 安装Docker Compose插件。可以使用以下方法安装: 2.1 下载指定版本的docker-compose文件: curl -L https://github.com/docker/compose/releases/download/1.21.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose 2.2 赋予docker-compose文件执行权限: chmod +x /usr/local/bin/docker-compose 2.3 验证安装是否成功: docker-compose --version 3. 在安装插件之前,可以测试端口是否已被占用,以避免编排过程中出错。可以使用以下命令安装netstat并查看端口号是否被占用: yum -y install net-tools netstat -npl | grep 3306 现在,您已经安装Docker安装Docker Compose插件,可以继续进行其他操作,例如上传docker-compose.yml文件到服务器,并在服务器上安装MySQL容器。可以参考Docker的官方文档或其他资源来了解如何使用DockerDocker Compose进行容器的安装和配置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Docker安装docker-compose插件](https://blog.csdn.net/qq_50661854/article/details/124453329)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Docker安装MySQL docker安装mysql 完整详细教程](https://blog.csdn.net/qq_40739917/article/details/130891879)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值