hdu3530 单调队列

 

 

There is a sequence of integers. Your task is to find the longest subsequence that satisfies the following condition: the difference between the maximum element and the minimum element of the subsequence is no smaller than m and no larger than k.

Input

There are multiple test cases. 
For each test case, the first line has three integers, n, m and k. n is the length of the sequence and is in the range [1, 100000]. m and k are in the range [0, 1000000]. The second line has n integers, which are all in the range [0, 1000000]. 
Proceed to the end of file. 

Output

For each test case, print the length of the subsequence on a single line.

Sample Input

5 0 0
1 1 1 1 1
5 0 3
1 2 3 4 5

Sample Output

5
4

题意:给出一个大小为n的数组a[n];        求其中最大值减最小值在【m,k】中的字串最长长度。

解:开两个队列 s ,一个存下降子序列s1 ,一个存上升子序列s2,那么top代表最值


#include<stdio.h>
#include<string.h>
#include<iostream>
#define maxn 100000+10
using namespace std;
int a[maxn];
int s1[maxn],s2[maxn];
int main()
{
    int n,m,k;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        int top1,top2,tail1,tail2,last1,last2,ans;
        ans=top1=top2=tail1=tail2=last1=last2=0;
        memset(s1,0,sizeof(s1));
        memset(s2,0,sizeof(s2));
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
        {
            while(top1<tail1&&a[s1[tail1-1]]<=a[i]) tail1--;//维护下降序列 

            s1[tail1++]=i;

            while(top2<tail2&&a[s2[tail2-1]]>=a[i]) tail2--;//维护上升序列

            s2[tail2++]=i;

            while(a[s1[top1]]-a[s2[top2]]>k)//如果最值之差大于k,那么更新离i最远的位置,让距离尽量最大
            {
               if(s1[top1]<s2[top2])
                    last1=s1[top1++];
               else  last2=s2[top2++];
            }
            if(a[s1[top1]]-a[s2[top2]]>=m)
                ans=max(ans,i-max(last1,last2));//得保证一定满足之差小于等于k

        }
        printf("%d\n",ans);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值