Spark源码之Executor线程池

1:Executor线程池
  // Start worker thread pool
  private val threadPool = {
    val threadFactory = new ThreadFactoryBuilder()
      .setDaemon(true)
      .setNameFormat("Executor task launch worker-%d")
      .setThreadFactory(new ThreadFactory {
        override def newThread(r: Runnable): Thread =
          // Use UninterruptibleThread to run tasks so that we can allow running codes without being
          // interrupted by `Thread.interrupt()`. Some issues, such as KAFKA-1894, HADOOP-10622,
          // will hang forever if some methods are interrupted.
          new UninterruptibleThread(r, "unused") // thread name will be set by ThreadFactoryBuilder
      })
      .build()
    Executors.newCachedThreadPool(threadFactory).asInstanceOf[ThreadPoolExecutor]
  }

进入Executors —>Alt + 7查看类中方法
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值