ConcurrentHashMap在jdk7的使用的是分段锁(ReentrantLock),而jdk8则改为使用synchronized。同时jdk8的ConcurrentHashMap和HashMap一样的引入红黑树(解决hash冲撞时的操作效率),并且在扩容过程中像ForkJoinPool一样可以自动多线程协作(提高扩容效率,并且解决HashMap的扩容时并发问题……PS:请慎用jdk8的ParallelStream,因为它底层默认调用的是公共的ForkJoinPool)。整个代码的逻辑和HashMap十分相似,可以对照着看方便理解。
下文和HashMap一样,针对ConcurrentHashMap的初始化、put和扩容源码进行分析。
初始化
/**
* Creates a new, empty map with an initial table size
* accommodating the specified number of elements without the need
* to dynamically resize.
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative
*/
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
/**
* Returns a power of two table size for the given desired capacity.
* See Hackers Delight, sec 3.2
*/
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
其中的tableSizeFor(int c)和HashMap一致,并且都是将真正存放数据的内部Node数组延迟初始化。特殊的是最后一行this.sizeCtl = cap;
sizeCtl使用了Unsafe进行操纵,一样使用Unsafe的还有以下这些变量。通过这些变量和相关代码,ConcurrentHashMap实现高并发时线程安全的效果。
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
private transient volatile long baseCount;
/**
* Table initialization and resizing control. When negative, the
* table is being initialized or resized: -1 for initialization,
* else -(1 + the number of active resizing threads). Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or 0 for default. After initialization, holds the
* next element count value upon which to resize the table.
*/
private transient volatile int sizeCtl;
/**
* The next table index (plus one) to split while resizing.
*/
private transient volatile int transferIndex;
/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
private transient volatile int cellsBusy;
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentHashMap.class;
SIZECTL = U.objectFieldOffset
(k.getDeclaredField("sizeCtl"));
TRANSFERINDEX = U.objectFieldOffset
(k.getDeclaredField("transferIndex"));
BASECOUNT = U.objectFieldOffset
(k.getDeclaredField("baseCount"));
CELLSBUSY = U.objectFieldOffset
(k.getDeclaredField("cellsBusy"));
Class<?> ck = CounterCell.class;
CELLVALUE = U.objectFieldOffset
(ck.getDeclaredField("value"));
Class<?> ak = Node[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}
put
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
static final int spread(int h) {
// 高低位异或,并且强制第一位为0
return (h ^ (h >>> 16)) & HASH_BITS;
}
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 使用高低位异或得到内部使用的hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable(); // 首次使用或者延迟实例化
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// Node数组中hash对应位置f没值,使用cas新建节点
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f); // Node数组中hash标记为迁移中,协助迁移
else {
// hash对应位置已有节点f
V oldVal = null;
// 单独对节点f加同步锁
synchronized (f) {
// 再检查一次
if (tabAt(tab, i) == f) {
if (fh >= 0) {
// 链表,最后binCount为链表长度
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
// hash值相同且key相同,准备赋值value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 到达链表末尾,添加新node
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
// 判断节点是红黑树,插入红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 链表长度达到红黑树阈值,转换为红黑树
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 计数器+1,并且检查是否需要扩容
addCount(1L, binCount);
return null;
}
/**
* Replaces all linked nodes in bin at given index unless table is
* too small, in which case resizes instead.
*/
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
// node数组长度小于64时,和HashMap一样进行扩容代替转换红黑树操作
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
// 节点b存在且状态不是在扩容中,加同步锁
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
// 将链表的每个元素按序转换为红黑树的一个节点
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
// 将树直接设置到node数组中
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
扩容
有三个方法触发扩容,分别是addCount、helpTransfer和tryPresize,对应外层的各种添加元素操作,下面主要分析transfer这个扩容的核心方法。
transfer
/** Number of CPUS, to place bounds on some sizings */
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* Minimum number of rebinnings per transfer step. Ranges are
* subdivided to allow multiple resizer threads. This value
* serves as a lower bound to avoid resizers encountering
* excessive memory contention. The value should be at least
* DEFAULT_CAPACITY.
*/
private static final int MIN_TRANSFER_STRIDE = 16;
/**
* Moves and/or copies the nodes in each bin to new table. See
* above for explanation.
*/
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// 通过CPU核数进行扩容任务分割,最少分割为16个子任务
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
// 初始化扩容用的新node数组,扩容1倍
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
// 从最后一个节点开始进行倒序迁移,子任务完成后,剩余的节点都由本线程独立进行迁移
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
// 扩容完成,替换正式node数组
nextTable = null;
table = nextTab;
// sizeCtl设置为当前数组大小的0.75(1-1/4=0.75)
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
// 原f节点为null,直接标记节点已迁移
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
// f节点已迁移,执行下一个节点的迁移
advance = true; // already processed
else {
// 锁定f节点,进行迁移
synchronized (f) {
// 再校验
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
// 链节点
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
// 同HashMap扩容的链表处理,将数组中f节点的元素按原顺序分散到新Node数组上
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln); // 掩码位为0,保留在低位链表
else
hn = new Node<K,V>(ph, pk, pv, hn); // 掩码位为1,添加到高位链表
}
// 将高低位链表分别放到新node数组中
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
// 原node数组f节点标记为已迁移
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
// 树节点
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
// 类似链节点的处理,将数组中f节点的元素按原顺序分散到新Node数组上
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
// 掩码位为0,保留在低位树
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
// 掩码位为1,添加到高位树
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 分散后得到的高低位树长度小于等于6的,转换为链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
// 将高低位树分别放到新node数组中
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
// 原node数组f节点标记为已迁移
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
/**
* A node inserted at head of bins during transfer operations.
*/
static final class ForwardingNode<K,V> extends Node<K,V> {
final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab) {
// 设置hash为MOVED,用于判断该节点是否已经完成迁移
super(MOVED, null, null, null);
this.nextTable = tab;
}
……
}
可见和jdk8的HashMap扩容区别不大,使用了同步锁、CAS、倒序迁移、划分子任务等技术实现了多线程安全和高效。
helpTransfer
/**
* Helps transfer if a resize is in progress.
*/
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
// 扩容中但未扩容完成的,协助扩容
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}