Spark SQL基础
Spark SQL简介
Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。
Spark SQL的特点:
- 容易整合(集成)
- 统一的数据访问方式
- 兼容Hive
- 标准的数据连接
基本概念:Datasets和DataFrames
-
DataFrame
DataFrame是组织成命名列的数据集。它在概念上等同于关系数据库中的表,但在底层具有更丰富的优化。DataFrames可以从各种来源构建,
例如: -
结构化数据文件
-
hive中的表
-
外部数据库或现有RDDs
DataFrame API支持的语言有Scala,Java,Python和R。
从上图可以看出,DataFrame多了数据的结构信息,即schema。RDD是分布式的 Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化 -
Datasets
Dataset是数据的分布式集合。Dataset是在Spark 1.6中添加的一个新接口,是DataFrame之上更高一级的抽象。它提供了RDD的优点(强类型化,使用强大的lambda函数的能力)以及Spark SQL优化后的执行引擎的优点。一个Dataset 可以从JVM对象构造,然后使用函数转换(map, flatMap,filter等)去操作。 Dataset API 支持Scala和Java。 Python不支持Dataset API。
创建DataFrames
通过Case Class创建DataFrames
① 定义case class(相当于表的结构:Schema)
注意:由于mgr和comm列中包含null值,简单起见,将对应的case class类型定义为String
② 将HDFS上的数据读入RDD,并将RDD与case Class关联
③ 将RDD转换成DataFrames
④ 通过DataFrames查询数据
使用SparkSession
① 什么是SparkSession
Apache Spark 2.0引入了SparkSession,其为用户提供了一个统一的切入点来使用Spark的各项功能,并且允许用户通过它调用DataFrame和Dataset相关API来编写Spark程序。最重要的是,它减少了用户需要了解的一些概念,使得我们可以很容易地与Spark交互。
在2.0版本之前,与Spark交互之前必须先创建SparkConf和SparkContext。然而在Spark 2.0中,我们可以通过SparkSession来实现同样的功能,而不需要显式地创建SparkConf, SparkContext 以及 SQLContext,因为这些对象已经封装在SparkSession中。
② 创建StructType,来定义Schema结构信息
注意,需要:import org.apache.spark.sql.types._
③ 读入数据并且切分数据
④ 将RDD中的数据映射成Row
注意,需要:import org.apache.spark.sql.Row
⑤ 创建DataFrames
val df = spark.createDataFrame(rowRDD,myschema)
再举一个例子,使用JSon文件来创建DataFame
① 源文件:$SPARK_HOME/examples/src/main/resources/people.json
② val df = spark.read.json(“源文件”)
③ 查看数据和Schema信息
DataFrame操作
DataFrame操作也称为无类型的Dataset操作
- 查询所有的员工姓名
- 查询所有的员工姓名和薪水,并给薪水加100块钱
- 查询工资大于2000的员工
- 求每个部门的员工人数
- ==完整的例子,请参考:
http://spark.apache.org/docs/2.1.0/api/scala/index.html#org.apache.spark.sql.Dataset
在DataFrame中使用SQL语句
- 将DataFrame注册成表(视图):df.createOrReplaceTempView(“emp”)
- 执行查询:spark.sql(“select * from emp”).show
- spark.sql(“select * from emp where deptno=10”).show
- spark.sql(“select deptno,sum(sal) from emp group by deptno”).show
Global Temporary View
上面使用的是一个在Session生命周期中的临时views。在Spark SQL中,如果你想拥有一个临时的view,并想在不同的Session中共享,而且在application的运行周期内可用,那么就需要创建一个全局的临时view。并记得使用的时候加上global_temp作为前缀来引用它,因为全局的临时view是绑定到系统保留的数据库global_temp上。
① 创建一个普通的view和一个全局的view
df.createOrReplaceTempView(“emp1”)
df.createGlobalTempView(“emp2”)
② 在当前会话中执行查询,均可查询出结果。
spark.sql(“select * from emp1”).show
spark.sql(“select * from global_temp.emp2”).show
③ 开启一个新的会话,执行同样的查询
spark.newSession.sql(“select * from emp1”).show (运行出错)
spark.newSession.sql(“select * from global_temp.emp2”).show
创建Datasets
DataFrame的引入,可以让Spark更好的处理结构数据的计算,但其中一个主要的问题是:缺乏编译时类型安全。为了解决这个问题,Spark采用新的Dataset API (DataFrame API的类型扩展)。
Dataset是一个分布式的数据收集器。这是在Spark1.6之后新加的一个接口,兼顾了RDD的优点(强类型,可以使用功能强大的lambda)以及Spark SQL的执行器高效性的优点。所以可以把DataFrames看成是一种特殊的Datasets,即:Dataset(Row)
创建DataSet,方式一:使用序列
1、定义case class
case class MyData(a:Int,b:String)
2、生成序列,并创建DataSet
val ds = Seq(MyData(1,“Tom”),MyData(2,“Mary”)).toDS
3、查看结果
创建DataSet,方式二:使用JSON数据
1、定义case class
case class Person(name: String, gender: String)
2、通过JSON数据生成DataFrame
val df = spark.read.json(sc.parallelize("""{“gender”: “Male”, “name”: “Tom”}""" :: Nil))
3、将DataFrame转成DataSet
df.as[Person].show
df.as[Person].collect
创建DataSet,方式三:使用HDFS数据
1、读取HDFS数据,并创建DataSet
val linesDS = spark.read.text(“hdfs://hadoop111:9000/data/data.txt”).as[String]
2、对DataSet进行操作:分词后,查询长度大于3的单词
val words = linesDS.flatMap(.split(" ")).filter(.length > 3)
words.show
words.collect
3、执行WordCount程序
val result = linesDS.flatMap(.split(" ")).map((,1)).groupByKey(x => x._1).count
result.show
排序:result.orderBy($“value”).show
使用数据源
通用的Load/Save函数
什么是parquet文件?
Parquet是列式存储格式的一种文件类型,列式存储有以下的核心:
- 可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量
- 压缩编码可以降低磁盘存储空间。由于同一列的数据类型是一样的,可以使用更高效的压缩编码(例如Run Length Encoding和Delta Encoding)进一步节约存储空间。
- 只读取需要的列,支持向量运算,能够获取更好的扫描性能
- Parquet格式是Spark SQL的默认数据源,可通过spark.sql.sources.default配置
通用的Load/Save函数
- 读取Parquet文件
val usersDF = spark.read.load("/root/resources/users.parquet") - 查询Schema和数据
- 查询用户的name和喜爱颜色,并保存
usersDF.select($"name",$"favorite_color").write.save("/root/result/parquet")
- 验证结果
显式指定文件格式:加载json格式
-
直接加载:val usersDF = spark.read.load("/root/resources/people.json") 会出错
-
val usersDF = spark.read.format(“json”).load("/root/resources/people.json")
存储模式(Save Modes)
可以采用SaveMode执行存储操作,SaveMode定义了对数据的处理模式。需要注意的是,这些保存模式不使用任何锁定,不是原子操作。此外,当使用Overwrite方式执行时,在输出新数据之前原数据就已经被删除。SaveMode详细介绍如下表:
Demo:
- usersDF.select($“name”).write.save("/root/result/parquet1")
–> 出错:因为/root/result/parquet1已经存在 - usersDF.select($“name”).write.mode(“overwrite”).save("/root/result/parquet1")
将结果保存为表
- usersDF.select($“name”).write.saveAsTable(“table1”)
也可以进行分区、分桶等操作:partitionBy、bucketBy
Parquet文件
Parquet是一个列格式而且用于多个数据处理系统中。Spark SQL提供支持对于Parquet文件的读写,也就是自动保存原始数据的schema。当写Parquet文件时,所有的列被自动转化为nullable,因为兼容性的缘故。
- 案例
- 读入json格式的数据,将其转换成parquet格式,并创建相应的表来使用SQL进行查询。
Schema的合并
Parquet支持Schema evolution(Schema演变,即:合并)。用户可以先定义一个简单的Schema,然后逐渐的向Schema中增加列描述。通过这种方式,用户可以获取多个有不同Schema但相互兼容的Parquet文件。
Demo:
JSON Datasets
Spark SQL能自动解析JSON数据集的Schema,读取JSON数据集为DataFrame格式。读取JSON数据集方法为SQLContext.read().json()。该方法将String格式的RDD或JSON文件转换为DataFrame。
需要注意的是,这里的JSON文件不是常规的JSON格式。JSON文件每一行必须包含一个独立的、自满足有效的JSON对象。如果用多行描述一个JSON对象,会导致读取出错。读取JSON数据集示例如下:
- Demo1:使用Spark自带的示例文件 --> people.json 文件
定义路径:
val path ="/root/resources/people.json"
读取Json文件,生成DataFrame:
val peopleDF = spark.read.json(path)
打印Schema结构信息:
peopleDF.printSchema()
创建临时视图:
peopleDF.createOrReplaceTempView(“people”)
执行查询
spark.sql(“SELECT name FROM people WHERE age=19”).show
使用JDBC
Spark SQL同样支持通过JDBC读取其他数据库的数据作为数据源。
Demo演示:使用Spark SQL读取Oracle数据库中的表。
- 启动Spark Shell的时候,指定Oracle数据库的驱动
spark-shell --master spark://spark81:7077 \\
--jars /root/temp/ojdbc6.jar \\
--driver-class-path /root/temp/ojdbc6.jar
读取Oracle数据库中的数据
-
方式一
val oracleDF = spark.read.format(“jdbc”).
option(“url”,“jdbc:oracle:thin:@192.168.88.101:1521/orcl.example.com”).
option(“dbtable”,“scott.emp”).
option(“user”,“scott”).
option(“password”,“tiger”).
load -
方式二
导入需要的类:
import java.util.Properties
定义属性:
val oracleprops = new Properties()
oracleprops.setProperty(“user”,“scott”)
oracleprops.setProperty(“password”,“tiger”)
读取数据:
val oracleEmpDF =
spark.read.jdbc(“jdbc:oracle:thin:@192.168.88.101:1521/orcl.example.com”,
“scott.emp”,oracleprops)
使用Hive Table
-
首先,搭建好Hive的环境(需要Hadoop)
-
配置Spark SQL支持Hive
-
只需要将以下文件拷贝到$SPARK_HOME/conf的目录下,即可
-
$HIVE_HOME/conf/hive-site.xml
-
$HADOOP_CONF_DIR/core-site.xml
-
$HADOOP_CONF_DIR/hdfs-site.xml
-
使用Spark Shell操作Hive
-
启动Spark Shell的时候,需要使用–jars指定mysql的驱动程序
-
创建表
-
spark.sql(“create table src (key INT, value STRING) row format delimited fields terminated by ‘,’”)
-
导入数据
-
spark.sql(“load data local path ‘/root/temp/data.txt’ into table src”)
-
查询数据
-
spark.sql(“select * from src”).show
-
使用spark-sql操作Hive
-
启动spark-sql的时候,需要使用–jars指定mysql的驱动程序
-
操作Hive
-
show tables;
-
select * from 表;