OpenCV与AI深度学习 | 实战|OpenCV实时弯道检测(详细步骤+源码)

本文介绍了如何使用Python和OpenCV开发一个实时的弯曲车道检测系统,包括畸变校正、透视变换、边缘检测等步骤,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:实战|OpenCV实时弯道检测(详细步骤+源码)

0 导读

本文主要介绍如何使用 Python 和 OpenCV实现一个实时曲线道路检测系统

图片

1 背景介绍

    在任何驾驶场景中,车道线都是指示交通流量和车辆应行驶位置的重要组成部分。这也是开发自动驾驶汽车的一个很好的起点!在我之前的车道检测项目的基础上,我实现了一个曲线车道检测系统,该系统工作得更好,并且对具有挑战性的环境更加稳健。车道检测系统是使用 OpenCV 库用 Python 编写的。    

下面是实现步骤:

  • 畸变校正

  • 透视变换

  • Sobel滤波

  • 直方图峰值检测

  • 滑动窗口搜索

  • 曲线拟合

  • 覆盖检测车道

  • 应用于视频

2 畸变矫正

    相机镜头扭曲入射光以将其聚焦在相机传感器上。尽管这对于我们捕捉环境图像非常有用,但它们最终往往会稍微不准确地扭曲光线。这可能导致计算机视觉应用中的测量不准确。然而,我们可以很容易地纠正这种失真。

    我们可以使用棋盘格来标定相机然后做畸变校正:

    测试视频中使用的相机用于拍摄棋盘格的 20 张照片,用于生成畸变模型。我们首先将图像转换为灰度,然后应用cv2.findChessboardCorners()函数。我们已经知道这个棋盘是一个只有直线的二维对象,所以我们可以对检测到的角应用一些变换来正确对齐它们。用 cv2.CalibrateCamera() 来获取畸变系数和相机矩阵。相机已校准!

    然后,您可以使用它cv2.undistort()来矫正其余的输入数据。您可以在下面看到棋盘的原始图像和校正后的图像之间的差异&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值