The Suspects||POJ1611

本文提供了一道名为“The Suspects”的POJ 1611题目解答,采用并查集算法来解决学生群体中疑似病例的追踪问题。通过输入学生群体信息,程序能够快速识别所有潜在的接触者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://poj.org/problem?id=1611
The Suspects

Time Limit: 1000MS      Memory Limit: 20000K
Total Submissions: 40525        Accepted: 19575

Description

Severe acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized as a global threat in mid-March 2003. To minimize transmission to others, the best strategy is to separate the suspects from others.
In the Not-Spreading-Your-Sickness University (NSYSU), there are many student groups. Students in the same group intercommunicate with each other frequently, and a student may join several groups. To prevent the possible transmissions of SARS, the NSYSU collects the member lists of all student groups, and makes the following rule in their standard operation procedure (SOP).
Once a member in a group is a suspect, all members in the group are suspects.
However, they find that it is not easy to identify all the suspects when a student is recognized as a suspect. Your job is to write a program which finds all the suspects.

Input

The input file contains several cases. Each test case begins with two integers n and m in a line, where n is the number of students, and m is the number of groups. You may assume that 0 < n <= 30000 and 0 <= m <= 500. Every student is numbered by a unique integer between 0 and n−1, and initially student 0 is recognized as a suspect in all the cases. This line is followed by m member lists of the groups, one line per group. Each line begins with an integer k by itself representing the number of members in the group. Following the number of members, there are k integers representing the students in this group. All the integers in a line are separated by at least one space.
A case with n = 0 and m = 0 indicates the end of the input, and need not be processed.

Output

For each case, output the number of suspects in one line.

Sample Input

100 4
2 1 2
5 10 13 11 12 14
2 0 1
2 99 2
200 2
1 5
5 1 2 3 4 5
1 0
0 0

Sample Output

4
1
1

题解:简单的并查集运用

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int par[30003],num[30003];
void initial(int n)//初始化,每个人的父节点是自己,每棵树大小都为1 
{
    int i;
    for(i=0;i<n;i++)
    {
        par[i]=i;
        num[i]=1;
    }
}
int find(int x)//找祖宗 
{
    if(x!=par[x])
      par[x]=find(par[x]);
    return par[x];
}
void unite(int x,int y)//合并 
{
    int fx=find(x);
    int fy=find(y);
    if(fx==fy)//祖宗相同跳出 
      return ;
    if(num[fx]>=num[fy])//孩子多的是爸爸 
    {
        par[fy]=fx;
        num[fx]+=num[fy];
    }
    else
    {
        par[fx]=fy;
        num[fy]+=num[fx];
    }
}
int main()
{
    int n,m,k,a,b,i,j;
    while(cin>>n>>m)
    {
        if(n==0&&m==0) break;
        initial(n);
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&k,&a);
            for(j=1;j<k;j++)
            {
                scanf("%d",&b);
                unite(a,b);
            }
        }
        printf("%d\n",num[par[0]]);//par【0】,是0的父节点,可能是0本身,然后num【par【0】】其实就是0所在这棵树的大小 
    }
return 0;
}
内容概要:本文档介绍了一个多目标规划模型,该模型旨在优化与水资源分配相关的多个目标。它包含四个目标函数:最小化F1(x),最大化F2(x),最小化F3(x)和最小化F4(x),分别对应于不同的资源或环境指标。每个目标函数都有具体的数值目标,如F1的目标值为1695亿立方米水,而F2则追求达到195.54亿立方米等。此外,模型还设定了若干约束条件,包括各区域内的水量限制以及确保某些变量不低于特定百分比的下限。特别地,为了保证模型的有效性和合理性,提出需要解决目标函数间数据尺度不一致的问题,并建议采用遗传算法或其他先进算法进行求解,以获得符合预期的决策变量Xi(i=1,2,...,14)的结果。 适合人群:对数学建模、运筹学、水资源管理等领域感兴趣的科研人员、高校师生及从业者。 使用场景及目标:①适用于研究涉及多目标优化问题的实际案例,尤其是水资源分配领域;②帮助读者理解如何构建和求解复杂的多目标规划问题,掌握处理不同尺度数据的方法;③为从事相关工作的专业人士提供理论参考和技术支持。 阅读建议:由于文档涉及到复杂的数学公式和专业术语,在阅读时应先熟悉基本概念,重点关注目标函数的具体定义及其背后的物理意义,同时注意理解各个约束条件的设计意图。对于提到的数据尺度不一致问题,建议深入探讨可能的解决方案,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三更鬼

谢谢老板!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值