四、神经网络语言模型(NNLM)

本文介绍了神经网络的基本结构,包括输入、隐藏和输出层,以及它们在回归和分类任务中的应用。讨论了隐藏层深度对模型性能的影响,重点讲解了各种激活函数如sigmoid、tanh、softmax和ReLU的特点和适用场景。此外,还涉及了神经网络语言模型的实现,特别是如何使用词向量和激活函数进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络(Neural Network,NN)主要由输入层、隐藏层、输出层构成,输入层的的节点数等于待处理数据中输入变量的个数(每一个变量代表了一个特征),输出层的节点数等于与每个输入变量关联的输出的数量(代表了分类标签的个数)。

不论是回归还是分类任务,输入和输出层的节点数是固定的(在做二分类时,如果采用 sigmoid 分类器,输出层的个数为 1 个;如果采用 softmax 分类器,输出层个数为2个)

一个基本的三层神经网络可见下图:

理论上,隐藏层的层数越深,拟合函数的能力越强,效果按理说会更好,但是实际上更深的层数可能会带来过拟合的问题,同时也会增加训练难度,使模型难以收敛。参考神经网络的理解与实现

神经网络语言模型(Neural Network Language Model, NNLM)

具体实现代码请参考

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞雪兆我心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值