HDOJ3549 最大流裸题,贴模板程序

本文详细介绍了一种经典的网络流问题——最大流问题,并提供了一个使用EK算法解决该问题的具体实例。通过邻接矩阵的方式存储图数据,实现了一个求解从源点到汇点的最大流的程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flow Problem

Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 17088    Accepted Submission(s): 8039


Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
 

Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
 

Output
For each test cases, you should output the maximum flow from source 1 to sink N.
 

Sample Input
  
  
2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
 

Sample Output
  
  
Case 1: 1 Case 2: 2
 

Author
HyperHexagon
 

Source
 

Recommend
zhengfeng   |   We have carefully selected several similar problems for you:   3572  3416  3081  3491  1533 


刚自学了EK算法,因为数据不大,就用了邻接矩阵存储
#include <iostream>
#include <queue>
#include <ctime>
#include <cmath>
#include <cstring>
using namespace std;

const int maxn = 20;
const int inf = 1<<30;
int flow[maxn],c[maxn][maxn],pre[maxn],n,m;
queue<int>q;

int bfs() {
    memset(flow,0,sizeof(flow));
    memset(pre,-1,sizeof(pre));
    pre[1] = 0;
    flow[1] = inf;
    while (!q.empty()) q.pop();
    q.push(1);
    int tmp;

    while (!q.empty()) {
        tmp = q.front();
        q.pop();
        if (tmp==n) break;

        for (int i=1; i<=n; i++) {
            if (pre[i]==-1 && i!=1 && c[tmp][i]) {
                flow[i] = min(flow[tmp],c[tmp][i]);
                pre[i] = tmp;
                q.push(i);
            }
        }
    }

    if (pre[n]==-1) return -1;
    return flow[n];
}

int EK(){
    int max_flow = 0;
    int increase,tmp,k;
    while ((increase=bfs())!=-1) {
        max_flow += increase;
        tmp = n;
        while (tmp!=1){
            k=pre[tmp];
            c[k][tmp] -= increase;
            c[tmp][k] += increase;
            tmp = k;
        }
    }
    return max_flow;
}

int main(){
    std::ios::sync_with_stdio(false);
    int t,s,e,tmp;
    cin >> t;
    for (int j=1; j<=t; j++) {
         cin >> n >> m;
         memset(c,0,sizeof(c));
         for (int i=1; i<=m; i++) {
             cin >> s >> e >> tmp;
             if (s==e) continue;
             c[s][e] += tmp;
         }
         cout << "Case " << j << ": " << EK() << endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值