最差時間復雜度 | ![]() |
---|---|
最優時間復雜度 | ![]() |
平均時間復雜度 | ![]() |
最差空間復雜度 | ![]() |
计数排序的特征
当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。
由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。
算法的步骤如下:
- 找出待排序的数组中最大和最小的元素
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
public class CountingSort {
public static void main(String[] argv) {
int[] A = CountingSort.countingSort(new int[]{16, 4, 10, 14, 7, 9, 3, 2, 8, 1});
Utils.print(A);
}
public static int[] countingSort(int[] A) {
int[] B = new int[A.length];
// 假设A中的数据a'有,0<=a' && a' < k并且k=100
int k = 100;
countingSort(A, B, k);
return B;
}
private static void countingSort(int[] A, int[] B, int k) {
int[] C = new int[k];
// 计数
for (int j = 0; j < A.length; j++) {
int a = A[j];
C[a] += 1;
}
Utils.print(C);
// 求计数和
for (int i = 1; i < k; i++) {
C[i] = C[i] + C[i - 1];
}
Utils.print(C);
// 整理
for (int j = A.length - 1; j >= 0; j--) {
int a = A[j];
B[C[a] - 1] = a;
C[a] -= 1;
}
}
}