【LeetCode: LCR 126. 斐波那契数 + 动态规划】

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述
在这里插入图片描述

🚩 题目链接

⛲ 题目描述

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

答案需要取模 1e9+7(1000000007) ,如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

0 <= n <= 100

🌟 求解思路&实现代码&运行结果


⚡ 动态规划

🥦 求解思路
  1. 动态规划:

    • 使用动态规划的思想,通过递推公式 F(n) = F(n-1) + F(n-2) 计算斐波那契数。

    • 使用数组 dp 存储已经计算过的斐波那契数,避免重复计算。

  2. 取模操作:

    • 在每次计算 F(n) 时,对结果取模 1000000007,防止数值溢出。
  3. 有了基本的思路,接下来我们就来通过代码来实现一下。

🥦 实现代码
class Solution {

    public static final int MOD = 1000000007; // 定义模数

    public int fib(int n) {
        if (n == 0) return 0; // 边界条件:F(0) = 0
        if (n == 1) return 1; // 边界条件:F(1) = 1
        int[] fib = new int[n + 1]; // 动态规划数组
        fib[1] = 1; // 初始化 F(1)
        for (int i = 2; i <= n; i++) {
            fib[i] = (fib[i - 1] % MOD + fib[i - 2] % MOD) % MOD; // 递推计算 F(n)
        }
        return fib[n]; // 返回结果
    }
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值