abs
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2851 Accepted Submission(s): 918
Problem Description
Given a number x, ask positive integer y≥2, that satisfy the following conditions:
1. The absolute value of y - x is minimal
2. To prime factors decomposition of Y, every element factor appears two times exactly.
1. The absolute value of y - x is minimal
2. To prime factors decomposition of Y, every element factor appears two times exactly.
Input
The first line of input is an integer T ( 1≤T≤50)
For each test case,the single line contains, an integer x ( 1≤x≤1018)
For each test case,the single line contains, an integer x ( 1≤x≤1018)
Output
For each testcase print the absolute value of y - x
Sample Input
5
1112
4290
8716
9957
9095
Sample Output
23
65
67
244
70
题意:给出一个x,求出一个y满足y的所有质因数出现零次或者两次,并使得y-x的绝对值最小
大概思路:去找开方x附近的值,这个值满足所有质因数最多只出现一次,并使得这个值的平方离x尽量的近
一开始的思路想把40000以内的素数打表出来,然后去找这个值,检查值是否满足所有质因数最多只出现一次的check函数这么写:
int check_y(int y){
if(prime[i]) return 1;
for(int i=2;i<=sqrt(y);i++){
if(prime[i]&&!y%i){
y/=i;
}
}
if(y==0) return 1;
return 0;
}
但是后面发现其实可以不用找素数,可以改成这么写:
int check_y(int y){
if(y==1) return 0;
for(int i=2;i<=sqrt(y);i++){
if(y%i==0){
y/=i;
if(y%i==0) return 0;
}
}
return 1;
}
下面是完整代码:
#include <iostream>
#include <cstdio>
#include <math.h>
#include <algorithm>
#define ll long long
using namespace std;
int check_y(int y){
if(y==1) return 0;
for(int i=2;i<=sqrt(y);i++){
if(y%i==0){
y/=i;
if(y%i==0) return 0;
}
}
return 1;
}
int main(){
int T,pow_y;
ll x,y,ans,r_pow_x,l_pow_x;;
// freopen("in.in","r",stdin);
cin>>T;
while(T--){
cin>>x;
l_pow_x=(ll)sqrt(1.0*x);
r_pow_x=l_pow_x+1;
while(true){
if(l_pow_x&&check_y(l_pow_x)&&check_y(r_pow_x)){
ans=min(x-l_pow_x*l_pow_x,r_pow_x*r_pow_x-x);
break;
}
if(check_y(r_pow_x)){
ans=r_pow_x*r_pow_x-x;
break;
}
if(l_pow_x&&check_y(l_pow_x)){
ans=x-l_pow_x*l_pow_x;
break;
}
if(l_pow_x>0) l_pow_x--;
r_pow_x++;
}
cout<<ans<<endl;
}
}
码的过程中y平方脑抽用了pow函数可能出现精度问题一直WA,后面改成直接相乘就AC了