BestCoder Round #28

本文深入探讨了两个技术挑战:一是找出在给定序列中缺失的两个数字,二是判断一个给定数字是否可以通过斐波那契数列的若干乘积来表示。通过详细解释解题思路并提供代码示例,本文旨在帮助读者理解和解决这类常见的编程问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1001

Missing number


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 748    Accepted Submission(s): 275


Problem Description
  
  
There is a permutation without two numbers in it, and now you know what numbers the permutation has. Please find the two numbers it lose.
 
Input
  
  
There is a number T shows there are T test cases below. ( T10 )
For each test case , the first line contains a integers n , which means the number of numbers the permutation has. In following a line , there are n distinct postive integers.( 1n1,000 )
 
Output
  
  
For each case output two numbers , small number first.
 
Sample Input
  
  
2 3 3 4 5 1 1
 
Sample Output
  
  
1 2 2 3
 
题意:给你n个数,问哪两个数丢失。

解题思路:题意给的n个数是1~n+2之间的数,因此只需要将在1~n+2之间却不在给定的n个数的数找出来即可。

参考代码:

#include <iostream>
#include <string.h>
#include <iomanip>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
int main(){
    int n,t,a;
    bool used[1003];
    cin>>t;
    while (t--){
        cin>>n;
        memset(used,false,sizeof(used));
        for (int i=0;i<n;i++){
            cin>>a;
            used[a]=true;
        }
        int flag=0;
        for (int i=1;i<=n+2;i++){
            if (used[i]==false){
                flag++;
                if (flag==1)
                    cout<<i<<" ";
                if (flag==2)
                    cout<<i<<endl;
            }
        }
    }
    return 0;
}

1002

Fibonacci


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 996    Accepted Submission(s): 40


Problem Description
  
  
Following is the recursive definition of Fibonacci sequence:
Fi=01Fi1+Fi2i = 0i = 1i > 1

Now we need to check whether a number can be expressed as the product of numbers in the Fibonacci sequence.
 
Input
  
  
There is a number T shows there are T test cases below. ( T100,000 )
For each test case , the first line contains a integers n , which means the number need to be checked.
0n1,000,000,000
 
Output
  
  
For each case output "Yes" or "No".
 
Sample Input
  
  
3 4 17 233
 
Sample Output
  
  
Yes No Yes
 
题意:给出fib数列,问任意给定的一个n是否可以是fib数列中的若干fib数的积;

解题思路:首先用一个数组将fib数列保存下来,然后求出用一个数组将Fibonacci数组中属于n的因子的数保存,最后在递归搜索求解是否存在n是这些Fibonacci数组成的积;

参考代码:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <string.h>
using namespace std;
int fib[100],a[100],i,k;
bool work(int n,int step){	//递归搜索求解是否存在n是这些Fibonacci数组成的积
	if (n==1)
		return true;
	for (int j=step;j<k;j++){
		if (n%a[j]==0){
			if (work(n/a[j],j)==true)
				return true;
		}
	}
	return false;
}
int main(){
	int t,n;
	/*构造Fibonacci数组*/
	fib[0]=0;
	fib[1]=1;
	for (i=2;i<46;i++){
		fib[i]=fib[i-1]+fib[i-2];
	}
	cin>>t;
	while (t--){
		cin>>n;
		if (n==0){
			cout<<"Yes"<<endl;
			continue;
		}
		k=0;
		for (int j=3;j<46;j++){	//用一个数组将Fibonacci数组中属于n的因子的数保存
			if (n%fib[j]==0)
				a[k++]=fib[j];
		}
		if (work(n,0)==true)
			cout<<"Yes"<<endl;
		else
			cout<<"No"<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值