
强化学习
文章平均质量分 96
爱笑的男孩。
分享机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。
如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com
展开
-
【强化学习】常用算法之一 “SAC”
强化学习(Reinforcement Learning,RL)是一种机器学习的分支,其目标是让智能体(agent)通过与环境的交互学习到最优的行为策略。SAC(Soft Actor-Critic)算法是近年来在强化学习领域取得重要突破的算法之一,它是一种基于策略优化和价值函数学习的算法。相对于传统的强化学习算法,SAC算法在优化过程中引入了熵正则化和软化策略更新的概念,使得智能体能够更好地探索未知的状态,提高学习效率。原创 2023-06-29 14:50:40 · 10857 阅读 · 4 评论 -
【强化学习】常用算法之一 “TRPO”
强化学习是机器学习的一个分支,通过智能体与环境的交互来学习最佳行为策略。TRPO算法是一种用于解决连续动作空间的强化学习问题的策略优化算法。与传统的基于梯度的策略优化算法相比,TRPO算法通过引入约束来限制参数更新的步长,以保证算法收敛性和稳定性。本文详细介绍了TRPO算法在强化学习中的应用。首先,简要介绍了TRPO算法,并讲述了其发展史。接着,给出了TRPO算法的公式及其讲解,详细解释了其算法原理和功能。最后,提供了TRPO算法的示例代码,并展示了其运行结果和使用方法。原创 2023-06-29 14:09:42 · 2152 阅读 · 1 评论 -
【强化学习】常用算法之一 “A3C”
A3C(Asynchronous Advantage Actor-Critic)算法是一种在强化学习领域中应用广泛的算法,它结合了策略梯度方法和价值函数的学习,用于近似解决马尔可夫决策过程(Markov Decision Process)问题。A3C算法在近年来备受关注,因为它在处理大规模连续动作空间和高维状态空间方面具有出色的性能。A3C算法是一种基于策略梯度的强化学习算法,通过多个并行的智能体异步地与环境交互,并利用Actor和Critic网络实现策略和价值的近似,从而实现快速而稳定的强化学习训练。原创 2023-06-29 12:26:57 · 5929 阅读 · 6 评论 -
【强化学习】常用算法之一 “PPO”
强化学习是一种通过智能体与环境的互动来学习最优行为策略的机器学习方法。相较于监督学习和无监督学习,强化学习的特点在于具有延迟奖赏和试错机制。在强化学习中,智能体通过选择动作来影响环境,并且从环境中获得奖励作为反馈。强化学习的目标是通过与环境的交互,使得智能体能够学会最优的行为策略。PPO算法属于策略优化(Policy Optimization)算法家族,是由OpenAI在2017年提出的。与其他策略优化算法相比,PPO算法具有较高的样本利用率和较好的收敛性能。原创 2023-06-29 10:38:28 · 1986 阅读 · 0 评论 -
【强化学习】常用算法之一 “DQN”
DQN算法是深度学习领域首次广泛应用于强化学习的算法模型之一。它于2013年由DeepMind公司的研究团队提出,通过将深度神经网络与经典的强化学习算法Q-learning结合,实现了对高维、连续状态空间的处理,具备了学习与规划的能力。本文对DQN算法进行了详细的讲解,包括发展史、算法公式和原理、功能、示例代码以及如何使用。DQN算法通过结合深度学习和Q-learning算法,实现了对高维、连续状态空间的处理,具备了学习和规划的能力。原创 2023-06-29 09:24:37 · 1502 阅读 · 0 评论 -
【强化学习】常用算法之一 “SARSA”
强化学习是一种通过学习与环境交互来最大化累积奖励的方法。在强化学习中,一个智能体在特定环境中根据当前状态选择一个动作,执行该动作后,环境将转移到新的状态,并且智能体将获得奖励。强化学习的目标是通过学习,使智能体能够选择一系列能够获取最大累积奖励的动作序列,即找到最优策略。SARSA算法是一种基于状态-动作值的强化学习算法,用来学习最优策略。本文详细介绍了强化学习中的SARSA算法,包括其发展历程、算法原理、功能以及使用方法,并给出了求解迷宫问题的示例代码。原创 2023-06-28 21:39:33 · 2404 阅读 · 0 评论 -
【强化学习】常用算法之一 “Q-learning”
Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。原创 2023-06-27 10:15:07 · 3199 阅读 · 2 评论 -
【强化学习】什么是“强化学习”
强化学习是机器学习领域的一种重要方法,主要通过使用环境的反馈信息来指导智能体的行为,并且通过智能体收集的经验数据对自身策略进行优化。在强化学习中,我们通常用“智能体”来表示学习机器或者一个决策实体。这个智能体在某个环境中采取行动,然后收到环境的反馈信号(奖励或者惩罚),从而逐渐学习到一个最优的行动策略。在强化学习中,主要涉及到一些概念,如状态、行动、奖励、策略等等。状态指的是输入进入智能体算法的集合,行动指的是智能体做出的反应,奖励通常是指环境给予智能体的反馈信息,策略指的是智能体在某种状态下选择的行为。原创 2023-06-26 10:06:41 · 818 阅读 · 0 评论