[心得]算法和数据结构Ellis Horowitz大神知识整理

本文整理自Ellis Horowitz的两本著作,涵盖数据结构的高级内容和经典算法。介绍了分治策略、优先级队列、贪心算法、回溯法、分支定界、并行算法等,并讨论了各种平衡树如AVL树、红黑树、B树和B+树,以及查找树如数字查找树和PATRICIA树。还涉及了凸包算法及其应用,强调了算法设计的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要取材自两本书:
计算机算法C++语言描述 第2版 Ellis Horowitz et al著
数据结构基础C语言版第2版 Ellis Horowitz et al著

这个作者的写书风格很符合我这个非科班计算机从业者的胃口。数据结构基础前8章我去年仔细动手做过一遍,因此这次整理的是9~12章的高级内容。

传统算法书只对很少的几个问题给出最优算法,但对设计过程着墨较少。作者认为算法书应该以设计为主分析为辅。

算法取自一个写数学课本的波斯作家。算法指一个有限代码行,如果按其执行,可完成某一个特定任务。

有3中方法来分析平摊代价:1.聚集法;2.算账法;3.势能法。算账法最常用,另两种不好计算。

随机算法是指使用了随机发生器的算法。它分为拉斯维加斯算法和蒙特卡罗算法。前者可以重复,后者则不可重复。

任意支持查找最大最小值,插入以及删除最小值(或最大值)的数据结构类型称为优先级队列。

分治策略将输入分为k个子问题。将子问题的解拼凑成原问题的解。
分治策略例子:
从n个元素找最大最小值(I.Pohl)
快速排序(C.A.R.Hoare)
已知n个元素,想确定其中第k小的元素

int Partition(int *a,int m,int p)
{
    int v=a[m];
    int i=m;
    int j=p;
    do
    {
        do i++;
        while(a[i]<v);
        do j--;
        while(a[j]>v);
        if(i>j) myswap(a,i,j);
    }while(i<j);
    a[m] = a[j];
    a[j] = v;
    return j;
}

void select1(int *a, int n, int k)
{
    int low=1, up=n+
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值