1015 Reversible Primes (20)
A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 10^5^) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
解题思路:
对素数的判断。
只要输入的n为正,就持续进行;先判断原n是否为素数,否就直接输出No。将n转化为d进制数,再将其反转,转化为十进制,判断是否为素数。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
bool isprime(int n){
if(n<=1) return false;
int sqr=(int)sqrt(1.0*n);
for(int i=2;i<=sqr;i++){
if(n%i==0) return false;
}
return true;
}
int change(int n,int d){
return n;
}
int main(){
int n,d;
while(scanf("%d",&n)!=EOF){
if(n<0) break;
scanf("%d",&d);
if(isprime(n)==false) printf("No\n");
else{
int index=0,ans[100];
do{
ans[index++]=n%d;
n/=d;
}while(n);
for(int i=0;i<index;i++) {
n=n*d+ans[i];
}
if(isprime(n)==false) printf("No\n");
else printf("Yes\n");
}
}
return 0;
}