Just the Facts
The expression
N
!, read as ``
N
factorial," denotes the product of the first
N
positive integers, where
N
is nonnegative. So, for example,
Just the Facts |
N | N! |
0 | 1 |
1 | 1 |
2 | 2 |
3 | 6 |
4 | 24 |
5 | 120 |
10 | 3628800 |
For this problem, you are to write a program that can compute the last non-zero digit of any factorial for ( ). For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce ``2" because 5! = 120, and 2 is the last nonzero digit of 120.
Input
Input to the program is a series of nonnegative integers not exceeding 10000, each on its own line with no other letters, digits or spaces. For each integer N , you should read the value and compute the last nonzero digit of N !.Output
For each integer input, the program should print exactly one line of output. Each line of output should contain the value N , right-justified in columns 1 through 5 with leading blanks, not leading zeroes. Columns 6 - 9 must contain `` -> " (space hyphen greater space). Column 10 must contain the single last non-zero digit of N !.Sample Input
1 2 26 125 3125 9999
Sample Output
1 -> 1 2 -> 2 26 -> 4 125 -> 8 3125 -> 2 9999 -> 8
#include <cstdio>
#include <cstdlib>
#include <cassert>
int count_twos (int);
int count_fives (int);
int count_fives_odds (int);
int last_digit_without_2_or_5 (int);
int last_digit_without_2_or_5_odds (int);
int last_nonzero (int);
int count_twos (int n)
{
int ret = 0;
if (n < 2) {
ret = 0;
} else {
ret = n / 2 + count_twos (n / 2);
}
return ret;
}
int count_fives_odds (int n)
/*
* parameter @n means: 1, 3, 5, ..., n. (an odd array)
*/
{
int ret = 0;
if (n < 5) {
ret = 0;
} else {
ret = (n + 5) / 10 + count_fives_odds (n / 5);
}
return ret;
}
int count_fives (int n)
/*
* parameter @n means: 1, 2, 3, ..., n.
*/
{
int ret = 0;
if (n < 5) {
ret = 0;
} else {
ret = (n + 5) / 10 + count_fives_odds (n / 5) + count_fives (n / 2);
}
return ret;
}
int last_digit_without_2_or_5_odds (int n)
/*
* parameter @n means: 1, 3, 5, ..., n. (an odd array)
*/
{
if (n < 1) {
return 1;
}
if (n % 2 == 0) {
// 'n' will never be an even, fix it.
--n;
}
static int loop3[] = {1, 3, 9, 7};
int x = loop3[(n + 7) / 10 % 4];
static int loop7[] = {1, 7, 9, 3};
int y = loop7[(n + 3) / 10 % 4];
static int loop9[] = {1, 9};
int z = loop9[(n + 1) / 10 % 2];
int w = last_digit_without_2_or_5_odds (n / 5);
return (x * y * z * w) % 10;
}
int last_digit_without_2_or_5 (int n)
/*
* parameter @n means: 1, 2, 3, ..., n.
*/
{
if (n < 1) {
return 1;
}
static int loop3[] = {1, 3, 9, 7};
int x = loop3[(n + 7) / 10 % 4];
static int loop7[] = {1, 7, 9, 3};
int y = loop7[(n + 3) / 10 % 4];
static int loop9[] = {1, 9};
int z = loop9[(n + 1) / 10 % 2];
int v = last_digit_without_2_or_5_odds (n / 5);
int w = last_digit_without_2_or_5 (n / 2);
return (x * y * z * v * w) % 10;
}
int last_nonzero (int n)
{
int twos = count_twos (n);
int fives = count_fives (n);
int remaining_twos = twos - fives; // number of remaining twos
assert (remaining_twos >= 0);
static int loop2[] = {6, 2, 4, 8};
int x = 1;
if (remaining_twos > 0) {
x = loop2[remaining_twos % 4];
}
int y = last_digit_without_2_or_5 (n);
return (x * y) % 10;
}
int main()
{
int n;
while (scanf ("%d", &n) == 1) {
printf ("%5d -> %d\n", n, last_nonzero (n));
}
return 0;
}