Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

本文是LLM系列文章,针对《Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention》的翻译。

本地稀疏注意力:硬件对齐和本地可训练的稀疏注意力

摘要

长上下文建模对于下一代语言模型至关重要,但标准注意力机制的高计算成本带来了重大的计算挑战。稀疏注意力为在保持模型功能的同时提高效率提供了一个有前景的方向。我们提出了NSA,这是一种可本地训练的稀疏注意力机制,它将算法创新与硬件对齐的优化相结合,以实现高效的长上下文建模。NSA采用动态分层稀疏策略,将粗粒度token压缩与细粒度token选择相结合,以保持全局上下文感知和局部精度。我们的方法通过两个关键创新推进了稀疏注意力设计:(1)我们通过算术强度平衡算法设计实现了显著的加速,并对现代硬件进行了实现优化。(2) 我们支持端到端训练,在不牺牲模型性能的情况下减少预训练计算。如图1所示,实验表明,使用NSA预训练的模型在一般基准测试、长上下文任务和基于指令的推理中保持或超过了全注意力模型。同时,NSA在解码、前向传播和后向传播的64k长度序列上比Full Attention实现了显著的加速,验证了其在整个模型生命周期中的效率。

1 引言

### Native Sparse Attention in Deep Learning Explained In the realm of deep learning, particularly within transformer models and their variants, attention mechanisms play a pivotal role by enabling models to focus on specific parts of input data when making predictions or generating outputs. Traditional full attention mechanisms compute relationships between all pairs of positions in sequences, leading to quadratic complexity with respect to sequence length. Native sparse attention addresses this issue through selective computation of attention scores only for certain predefined patterns or sparsity structures rather than every possible pair of tokens[^1]. This approach significantly reduces computational requirements while maintaining performance levels comparable to those achieved using dense attention schemes. #### Key Characteristics - **Sparsity Structures**: Various methods define different types of sparsity such as local windows where each token attends primarily to nearby elements along with occasional global connections that allow distant dependencies. - **Efficiency Gains**: By limiting interactions according to these structured patterns instead of computing pairwise relations across entire sequences, sparse attention can achieve substantial efficiency gains both in terms of memory usage and processing time required during training and inference phases. - **Performance Preservation**: Despite reducing computations involved compared to standard approaches, research indicates that well-designed sparse architectures do not compromise much—if at all—on predictive accuracy relative to fully connected counterparts under many circumstances[^2]. ```python import torch from transformers import LongformerModel model = LongformerModel.from_pretrained('allenai/longformer-base-4096') input_ids = torch.randint(0, 30000, size=(1, 4096)) # Example input tensor outputs = model(input_ids=input_ids) last_hidden_state = outputs.last_hidden_state ``` This code snippet demonstrates how one might use an implementation supporting native sparse attention from Hugging Face's Transformers library specifically designed for handling longer texts efficiently via long-range dependency modeling without excessive resource consumption.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值