Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
class Solution {
public:
int minDistance(string word1, string word2) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int result = 0;
int n1 = word1.size();
int n2 = word2.size();
int dist[n1 + 1][n2 + 1];
memset(dist, 0, sizeof(int) * (n1 + 1) * (n2+1));
for (int i = 0; i < n1+1; i++)
dist[i][0] = i;
for (int i = 0; i < n2+1; i++)
dist [0][i] = i;
for (int i = 1; i< n1+1; i++)
for (int j = 1; j < n2+1; j++){
if (word1[i-1] == word2[j-1])
dist[i][j] = dist [i-1][j-1];
else{
dist[i][j] = min(dist [i][j-1], dist [i-1][j])+1;
dist[i][j] = min(dist[i][j], dist[i-1][j-1]+1);
}
}
return dist[n1][n2];
}
};
这一题与longest subsequnce相关,找到最长子序列也就知道了需要的操作次数。
1. 原始的思想史:找到最长子序列的长度,用word1的长度减去最长子序列的长度即可。但是这样做有一个不方便:如果三个操作的权重不同该怎么办?
2. 仍然用DP,但是dp_value就是最小的操作。
3.
dist[i][j] = min(dist [i][j-1], dist [i-1][j])+1;
dist[i][j] = min(dist[i][j], dist[i-1][j-1]+1);
原本没有考虑第二行,导致错误!!!
4. 注意新的dp生成及初始化方法,之前都是用vector