目录
定义树节点
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
前序遍历,或称先序遍历
class Solution:
def preorderTraversal(self, root: TreeNode) -> List[int]:
# 二叉树的前序遍历Preorder Traversal (VLR),又称先序遍历、先根遍历
res = []
stack = []
stack.append(root) # 根节点入栈
while stack: # stack 非空时,说明树还没有遍历完毕
cur_node = stack[-1]
stack.pop()
if cur_node is None:
continue
res.append(cur_node.val) # 由于前序遍历,所以先把根节点的val加入ans
stack.append(cur_node.right) # 栈先进后出,所以前序遍历时,右节点先进后出
stack.append(cur_node.left) # 同理,左节点后进先出
return res
中序遍历
class Solution:
def inorderTraversal(self, root: TreeNode) -> List[int]:
# 中序相较于前序(直接按根的右左顺序压入栈中),多了一层循环,用于push直到最左边才停止
# 初始化
res = []
stack = []
cur_node = root
# 循环
while stack or cur_node:
while cur_node: # 一直找到最左侧的叶节点
stack.append(cur_node) # 从顶到底,每个左子树入栈
cur_node = cur_node.left
cur_node = stack.pop()
res.append(cur_node.val)
cur_node = cur_node.right
return res
后序遍历
class Solution:
def postorderTraversal(self, root: TreeNode) -> List[int]:
# 类似于先序遍历,但是最后用插入的方式,所以先push左节点,再push右节点
res = []
stack = []
stack.append(root)
while stack:
cur_node = stack.pop()
if cur_node is None:
continue
stack.append(cur_node.left)
stack.append(cur_node.right)
res.insert(0, cur_node.val) # 插入
return res