Linux 内核的驱动函数解析

本文详细介绍了Linux系统中I/O端口的两种映射方式:I/O映射和内存映射,并重点讲解了request_mem_region函数的作用,它主要用于声明和管理I/O资源。ioremap函数则是用于将物理地址转换为虚拟地址,确保CPU能够安全访问外设。同时,文章提到了iounmap函数用于取消映射。最后,讨论了驱动程序中mmap函数的应用,允许用户空间直接访问设备内存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种:


(1)I/O映射方式(I/O-mapped)

典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。 

(2)内存映射方式(Memory-mapped)

  RISC指令系统的CPU(如MIPS ARM PowerPC等)通常只实现一个物理地址空间,像这种情况,外设的I/O端口的物理地址就被映射到内存地址空间中,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。

1、request_mem_region函数。 
Linux把基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。

Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。

/* Convenience shorthand with allocation */
#define request_region(start,n,name)    __request_region(&ioport_resource, (start), (n), (name))
#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))
#define rename_region(region, newname) do { (region)->name = (newname); } while (0)
extern struct resource * __request_region(struct resource *,
                                         resource_size_t start,
                                         resource_size_t n, const char *name);

其实说白了,request_mem_region函数并没有做实际性的映射工作,只是告诉内核要使用一块内存地址,声明占有,也方便内核管理这些资源。

2、ioremap

重要的还是ioremap函数,ioremap主要是检查传入地址的合法性,建立页表(包括访问权限),完成物理地址到虚拟地址的转换。
void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。

 在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。

 

要成功地进行Xilinx Zynq-7000 SoC的集成开发,你将需要熟悉TLZ7xH-EVM开发板的硬件特性以及相应的软件编程。在此,我们推荐参考以下资源《创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7》,这将为你的项目提供详尽的支持。 参考资源链接:[创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7](https://wenku.csdn.net/doc/80nyorov3y) 首先,在硬件编程方面,你需要了解开发板的硬件架构和资源。TLZ7xH-EVM开发板集成了双核ARM Cortex-A9处理器和Kintex-7 FPGA。你应该首先阅读Zynq-7000开发板规格书,了解各个硬件接口和信号引脚的详细信息。根据你的项目需求,进行硬件资源配置,包括配置处理器的时钟频率、电源管理、存储接口以及外设接口等。 其次,在软件编程方面,Xilinx提供了Vivado和SDK套件,用于硬件逻辑设计和软件应用开发。在Vivado中,你需要完成硬件平台的设计和生成,包括创建项目、综合、实现和生成比特流文件。完成硬件设计后,你可以通过Xilinx SDK进行软件编程,创建应用程序和驱动,以与硬件平台交互。编写代码时,你需要参考开发板提供的Demo程序,这些示例程序展示了如何加载和运行用户代码。 确保你具备相关的硬件编程经验,以及掌握至少一种用于嵌入式开发的编程语言,如C/C++。在软件开发过程中,你还需要了解操作系统的选择和配置,比如使用PetaLinux等。 集成开发成功的关键在于硬件和软件的紧密配合,这通常需要进行多次迭代和调试。使用TLZ7xH-EVM开发板上的调试接口,比如JTAG和串口,进行代码调试和性能分析。 在开发过程中,不妨利用创龙科技提供的技术支持和服务,及时解决开发中遇到的问题。此外,你可以利用公司提供的增值服务平台,如定制化开发、培训等,进一步提升开发效率和产品品。 综上所述,通过阅读相关规格书,使用Vivado和SDK进行硬件设计和软件编程,结合创龙科技的技术支持,你将能够高效地完成Zynq-7000 SoC的集成开发任务。对于那些希望深入学习和探索更多高级功能和技巧的读者,我们再次推荐《创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7》,这份资料不仅帮助你入门,还将引导你掌握更深层次的知识。 参考资源链接:[创龙TLZ7xH-EVM开发板:Xilinx Zynq-7000双核Cortex-A9+Kintex-7](https://wenku.csdn.net/doc/80nyorov3y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值