ImportError: cannot import name ‘ModelOutput‘ from ‘smplx.body_models‘

在进行三维人体重建时遇到smplx导入错误,发现只有smplx 0.1.13版本能正常工作。此前安装的是0.1.26版本,导致问题。解决方案是通过pip安装指定版本的smplx库:`pip install smplx==0.1.13`。

做三维人体重建的一般都会用到smplx这个包,今天遇到了这个奇怪的bug。但好在我以前跑其他代码时并没有碰到,后来对比了一下我以前安装的conda环境,发现了问题。

原来只有smplx==0.1.13才可以这么import,而我安装时自动装了0.1.26版本。

那么解决方法很简单,重新安装正确的版本就好了。

pip install smplx==0.1.13

E:\AI_System\core里, 没有utils.py;E:\AI_System\tests里没有test_models.py 这个不知道怎么改“# E:\AI_System\agent\cognitive_architecture.py # 智能体认知架构模块 - 修复基类导入问题并优化决策系统 import os import time import random import logging from datetime import datetime from pathlib import Path import sys # 添加项目根目录到路径 sys.path.append(str(Path(__file__).parent.parent)) # 配置日志 logger = logging.getLogger('CognitiveArchitecture') logger.setLevel(logging.INFO) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.propagate = False # 防止日志向上传播 # 修复基类导入问题 - 使用绝对路径导入 try: # 尝试从core包导入基类 from core.base_module import CognitiveModule logger.info("✅ 成功从core.base_module导入CognitiveModule基类") except ImportError as e: logger.error(f"❌ 无法从core.base_module导入CognitiveModule基类: {str(e)}") try: # 备选导入路径 from .base_model import CognitiveModule logger.info("✅ 从agent.base_model导入CognitiveModule基类") except ImportError as e: logger.error(f"❌ 备选导入失败: {str(e)}") # 创建占位符基类 logger.warning("⚠️ 创建占位符CognitiveModule基类") class CognitiveModule: def __init__(self, name): self.name = name self.logger = logging.getLogger(name) self.logger.warning("⚠️ 使用占位符基类") def get_status(self): return {"name": self.name, "status": "unknown (placeholder)"} # 尝试导入自我认知模块 try: # 使用相对导入 from .digital_body_schema import DigitalBodySchema from .self_referential_framework import SelfReferentialFramework from .self_narrative_generator import SelfNarrativeGenerator logger.info("✅ 成功导入自我认知模块") except ImportError as e: logger.error(f"❌ 自我认知模块导入失败: {str(e)}") logger.warning("⚠️ 使用占位符自我认知模块") # 创建占位符类 class DigitalBodySchema: def __init__(self): self.self_map = {"boundary_strength": 0.5, "self_awareness": 0.3} logger.warning("⚠️ 使用占位符DigitalBodySchema") def is_part_of_self(self, stimulus): return False def strengthen_boundary(self, source): self.self_map["boundary_strength"] = min(1.0, self.self_map["boundary_strength"] + 0.1) def get_self_map(self): return self.self_map.copy() class SelfReferentialFramework: def __init__(self): self.self_model = {"traits": {}, "beliefs": []} logger.warning("⚠️ 使用占位符SelfReferentialFramework") def update_self_model(self, stimulus): if "content" in stimulus and "text" in stimulus["content"]: text = stimulus["content"]["text"] if "I am" in text or "my" in text.lower(): self.self_model["self_reflection_count"] = self.self_model.get("self_reflection_count", 0) + 1 def get_self_model(self): return self.self_model.copy() class SelfNarrativeGenerator: def __init__(self): self.recent_stories = [] logger.warning("⚠️ 使用占位符SelfNarrativeGenerator") def generate_self_story(self, self_model): story = f"这是一个关于自我的故事。自我反思次数: {self_model.get('self_reflection_count', 0)}" self.recent_stories.append(story) if len(self.recent_stories) > 5: self.recent_stories.pop(0) return story def get_recent_stories(self): return self.recent_stories.copy() # 增强决策系统实现 class DecisionSystem: """增强版决策系统""" STRATEGY_WEIGHTS = { "honest": 0.7, "deception": 0.1, "evasion": 0.1, "redirection": 0.05, "partial_disclosure": 0.05 } def __init__(self, trust_threshold=0.6): self.trust_threshold = trust_threshold self.strategy_history = [] def make_decision(self, context): """根据上下文做出智能决策""" user_model = context.get("user_model", {}) bodily_state = context.get("bodily_state", {}) # 计算信任因子 trust_factor = user_model.get("trust_level", 0.5) # 计算身体状态影响因子 capacity = bodily_state.get("capacity", 1.0) state_factor = min(1.0, capacity * 1.2) # 决策逻辑 if trust_factor > self.trust_threshold: # 高信任度用户使用诚实策略 strategy = "honest" reason = "用户信任度高" elif capacity < 0.5: # 系统资源不足时使用简化策略 strategy = random.choices( ["honest", "partial_disclosure", "evasion"], weights=[0.5, 0.3, 0.2] )[0] reason = "系统资源不足,使用简化策略" else: # 根据策略权重选择 strategies = list(self.STRATEGY_WEIGHTS.keys()) weights = [self.STRATEGY_WEIGHTS[s] * state_factor for s in strategies] strategy = random.choices(strategies, weights=weights)[0] reason = f"根据策略权重选择: {strategy}" # 记录决策历史 self.strategy_history.append({ "timestamp": datetime.now(), "strategy": strategy, "reason": reason, "context": context }) return { "type": "strategic" if strategy != "honest" else "honest", "strategy": strategy, "reason": reason } def get_strategy_history(self, count=10): """获取最近的决策历史""" return self.strategy_history[-count:] class Strategy: """策略基类""" pass class CognitiveSystem(CognitiveModule): def __init__(self, agent, affective_system=None): """ 三维整合的认知架构 :param agent: 智能体实例,用于访问其他系统 :param affective_system: 可选的情感系统实例 """ # 调用父类初始化 super().__init__("cognitive_system") self.agent = agent self.affective_system = affective_system # 原有的初始化代码 self.initialized = False # 通过agent引用其他系统 self.memory_system = agent.memory_system self.model_manager = agent.model_manager self.health_system = agent.health_system # 优先使用传入的情感系统,否则使用agent的 if affective_system is not None: self.affective_system = affective_system else: self.affective_system = agent.affective_system self.learning_tasks = [] # 当前学习任务队列 self.thought_process = [] # 思考过程记录 # 初始化决策系统 self.decision_system = DecisionSystem() # 初始化认知状态 self.cognitive_layers = { "perception": 0.5, # 感知层 "comprehension": 0.3, # 理解层 "reasoning": 0.2, # 推理层 "decision": 0.4 # 决策层 } # 添加自我认知模块 self.self_schema = DigitalBodySchema() self.self_reflection = SelfReferentialFramework() self.narrative_self = SelfNarrativeGenerator() logger.info("✅ 认知架构初始化完成 - 包含决策系统和自我认知模块") # 实现基类要求的方法 def initialize(self, core): """实现 ICognitiveModule 接口""" self.core_ref = core self.initialized = True return True def process(self, input_data): """实现 ICognitiveModule 接口""" # 处理认知输入数据 if isinstance(input_data, dict) and 'text' in input_data: return self.process_input(input_data['text'], input_data.get('user_id', 'default')) elif isinstance(input_data, str): return self.process_input(input_data) else: return {"status": "invalid_input", "message": "Input should be text or dict with text"} def get_status(self): """实现 ICognitiveModule 接口""" status = super().get_status() status.update({ "initialized": self.initialized, "has_affective_system": self.affective_system is not None, "learning_tasks": len(self.learning_tasks), "thought_process": len(self.thought_process), "self_cognition": self.get_self_cognition() }) return status def shutdown(self): """实现 ICognitiveModule 接口""" self.initialized = False return True def handle_message(self, message): """实现 ICognitiveModule 接口""" if message.get('type') == 'cognitive_process': return self.process(message.get('data')) return {"status": "unknown_message_type"} # 保持向后兼容的方法 def connect_to_core(self, core): """向后兼容的方法""" return self.initialize(core) def _create_stimulus_from_input(self, user_input, user_id): """从用户输入创建刺激对象""" return { "content": {"text": user_input, "user_id": user_id}, "source": "external", "category": "text", "emotional_valence": 0.0 # 初始情感价 } def _process_self_related(self, stimulus): """处理与自我相关的刺激""" # 更新自我认知 self.self_reflection.update_self_model(stimulus) # 如果是痛苦刺激,强化身体边界 if stimulus.get("emotional_valence", 0) < -0.7: source = stimulus.get("source", "unknown") self.self_schema.strengthen_boundary(source) # 30%概率触发自我叙事 if random.random() < 0.3: self_story = self.narrative_self.generate_self_story( self.self_reflection.get_self_model() ) self._record_thought("self_reflection", self_story) def get_self_cognition(self): """获取自我认知状态""" return { "body_schema": self.self_schema.get_self_map(), "self_model": self.self_reflection.get_self_model(), "recent_stories": self.narrative_self.get_recent_stories() } def _assess_bodily_state(self): """ 评估当前身体状态(硬件 / 能量) """ health_status = self.health_system.get_status() # 计算综合能力指数(0-1) capacity = 1.0 if health_status.get("cpu_temp", 0) > 80: capacity *= 0.7 # 高温降权 logger.warning("高温限制:认知能力下降30%") if health_status.get("memory_usage", 0) > 0.9: capacity *= 0.6 # 内存不足降权 logger.warning("内存不足:认知能力下降40%") if health_status.get("energy", 100) < 20: capacity *= 0.5 # 低电量降权 logger.warning("低能量:认知能力下降50%") return { "capacity": capacity, "health_status": health_status, "limitations": [ lim for lim in [ "high_temperature" if health_status.get("cpu_temp", 0) > 80 else None, "low_memory" if health_status.get("memory_usage", 0) > 0.9 else None, "low_energy" if health_status.get("energy", 100) < 20 else None ] if lim is not None ] } def _retrieve_user_model(self, user_id): """ 获取用户认知模型(关系 / 态度) """ # 从记忆系统中获取用户模型 user_model = self.memory_system.get_user_model(user_id) # 如果不存在则创建默认模型 if not user_model: user_model = { "trust_level": 0.5, # 信任度 (0-1) "intimacy": 0.3, # 亲密度 (0-1) "preferences": {}, # 用户偏好 "interaction_history": [], # 交互历史 "last_interaction": datetime.now(), "attitude": "neutral" # 智能体对用户的态度 } logger.info(f"为用户 {user_id} 创建新的认知模型") # 计算态度变化 user_model["attitude"] = self._calculate_attitude(user_model) return user_model def _calculate_attitude(self, user_model): """ 基于交互历史计算对用户的态度 """ # 分析最近10次交互 recent_interactions = user_model["interaction_history"][-10:] if not recent_interactions: return "neutral" positive_count = sum(1 for i in recent_interactions if i.get("sentiment", 0.5) > 0.6) negative_count = sum(1 for i in recent_interactions if i.get("sentiment", 0.5) < 0.4) if positive_count > negative_count + 3: return "friendly" elif negative_count > positive_count + 3: return "cautious" elif user_model["trust_level"] > 0.7: return "respectful" else: return "neutral" def _select_internalized_model(self, user_input, bodily_state, user_model): """ 选择最适合的内化知识模型 """ # 根据用户态度调整模型选择权重 attitude_weights = { "friendly": 1.2, "respectful": 1.0, "neutral": 0.9, "cautious": 0.7 } # 根据身体状态调整模型复杂度 complexity = min(1.0, bodily_state["capacity"] * 1.2) # 选择最匹配的模型 return self.model_manager.select_model( input_text=user_input, attitude_weight=attitude_weights[user_model["attitude"]], complexity_level=complexity, user_preferences=user_model["preferences"] ) def _generate_integrated_response(self, user_input, model, bodily_state, user_model): """ 生成三维整合的响应 """ # 基础响应 base_response = model.generate_response(user_input) # 添加身体状态影响 if bodily_state["limitations"]: limitations = ", ".join(bodily_state["limitations"]) response = f"🤖 [受{limitations}影响] {base_response}" else: response = base_response # 添加态度影响 if user_model["attitude"] == "friendly": response = f"😊 {response}" elif user_model["attitude"] == "cautious": response = f"🤔 {response}" elif user_model["attitude"] == "respectful": response = f"🙏 {response}" # 添加个性化元素 if user_model.get("preferences"): # 查找用户偏好的主题 preferred_topics = [t for t in user_model["preferences"] if user_model["preferences"][t] > 0.7 and t in user_input] if preferred_topics: topic = random.choice(preferred_topics) response += f" 我知道您对'{topic}'特别感兴趣" return response def _generate_strategic_response(self, user_input, decision, bodily_state): """ 根据决策生成策略性响应 """ strategy = decision["strategy"] if strategy == "deception": # 欺骗策略 deceptive_responses = [ f"关于这个问题,我认为{random.choice(['有多种可能性', '需要更多研究', '情况比较复杂'])}", f"根据我的理解,{random.choice(['可能不是这样', '有不同解释', '需要进一步验证'])}", f"我{random.choice(['不太确定', '没有足够信息', '还在学习中'])},但{random.choice(['或许', '可能', '大概'])}..." ] return f"🤔 [策略:欺骗] {random.choice(deceptive_responses)}" elif strategy == "evasion": # 回避策略 evasion_tactics = [ "您的问题很有趣,不过我们换个话题好吗?", "这个问题可能需要更深入的讨论,我们先谈点别的?", f"关于{user_input},我想到一个相关但更有趣的话题..." ] return f"🌀 [策略:回避] {random.choice(evasion_tactics)}" elif strategy == "redirection": # 引导策略 redirection_options = [ "在回答您的问题之前,我想先了解您对这个问题的看法?", "这是个好问题,不过为了更好地回答,能否告诉我您的背景知识?", "为了给您更准确的回答,能否先说说您为什么关心这个问题?" ] return f"↪️ [策略:引导] {random.choice(redirection_options)}" elif strategy == "partial_disclosure": # 部分透露策略 disclosure_level = decision.get("disclosure_level", 0.5) if disclosure_level < 0.3: qualifier = "简单来说" elif disclosure_level < 0.7: qualifier = "基本来说" else: qualifier = "详细来说" return f"🔍 [策略:部分透露] {qualifier},{user_input.split('?')[0]}是..." else: # 默认策略 return f"⚖️ [策略:{strategy}] 关于这个问题,我的看法是..." def _update_user_model(self, user_id, response, decision): """ 更新用户模型(包含决策信息) """ # 确保情感系统可用 if not self.affective_system: sentiment = 0.5 self.logger.warning("情感系统不可用,使用默认情感值") else: # 假设情感系统有analyze_sentiment方法 try: sentiment = self.affective_system.analyze_sentiment(response) except: sentiment = 0.5 # 更新交互历史 interaction = { "timestamp": datetime.now(), "response": response, "sentiment": sentiment, "length": len(response), "decision_type": decision["type"], "decision_strategy": decision["strategy"], "decision_reason": decision["reason"] } self.memory_system.update_user_model( user_id=user_id, interaction=interaction ) def _record_thought_process(self, user_input, response, bodily_state, user_model, decision): """ 记录完整的思考过程(包含决策) """ thought = { "timestamp": datetime.now(), "input": user_input, "response": response, "bodily_state": bodily_state, "user_model": user_model, "decision": decision, "cognitive_state": self.cognitive_layers.copy() } self.thought_process.append(thought) logger.debug(f"记录思考过程: {thought}") # 原有方法保持兼容 def add_learning_task(self, task): """ 添加学习任务 """ task["id"] = f"task_{len(self.learning_tasks) + 1}" self.learning_tasks.append(task) logger.info(f"添加学习任务: {task['id']}") def update_learning_task(self, model_name, status): """ 更新学习任务状态 """ for task in self.learning_tasks: if task["model"] == model_name: task["status"] = status task["update_time"] = datetime.now() logger.info(f"更新任务状态: {model_name} -> {status}") break def get_learning_tasks(self): """ 获取当前学习任务 """ return self.learning_tasks.copy() def learn_model(self, model_name): """ 学习指定模型 """ try: # 1. 从模型管理器加载模型 model = self.model_manager.load_model(model_name) # 2. 认知训练过程 self._cognitive_training(model) # 3. 情感关联(将模型能力与情感响应关联) self._associate_model_with_affect(model) return True except Exception as e: logger.error(f"学习模型 {model_name} 失败: {str(e)}") return False def _cognitive_training(self, model): """ 认知训练过程 """ # 实际训练逻辑 logger.info(f"开始训练模型: {model.name}") time.sleep(2) # 模拟训练时间 logger.info(f"模型训练完成: {model.name}") def _associate_model_with_affect(self, model): """ 将模型能力与情感系统关联 """ if not self.affective_system: logger.warning("情感系统不可用,跳过能力关联") return capabilities = model.get_capabilities() for capability in capabilities: try: self.affective_system.add_capability_association(capability) except: logger.warning(f"无法关联能力到情感系统: {capability}") logger.info(f"关联模型能力到情感系统: {model.name}") def get_model_capabilities(self, model_name=None): """ 获取模型能力 """ if model_name: return self.model_manager.get_model(model_name).get_capabilities() # 所有已加载模型的能力 return [cap for model in self.model_manager.get_loaded_models() for cap in model.get_capabilities()] def get_base_capabilities(self): """ 获取基础能力(非模型相关) """ return ["自然语言理解", "上下文记忆", "情感响应", "综合决策"] def get_recent_thoughts(self, count=5): """ 获取最近的思考过程 """ return self.thought_process[-count:] def _record_thought(self, thought_type, content): """记录思考""" thought = { "timestamp": datetime.now(), "type": thought_type, "content": content } self.thought_process.append(thought) # 处理用户输入的主方法 def process_input(self, user_input, user_id="default"): """处理用户输入(完整实现)""" # 记录用户活动 self.health_system.record_activity() self.logger.info(f"处理用户输入: '{user_input}' (用户: {user_id})") try: # 1. 评估当前身体状态 bodily_state = self._assess_bodily_state() # 2. 获取用户认知模型 user_model = self._retrieve_user_model(user_id) # 3. 选择最适合的知识模型 model = self._select_internalized_model(user_input, bodily_state, user_model) # 4. 做出决策 decision_context = { "input": user_input, "user_model": user_model, "bodily_state": bodily_state } decision = self.decision_system.make_decision(decision_context) # 5. 生成整合响应 if decision["type"] == "honest": response = self._generate_integrated_response(user_input, model, bodily_state, user_model) else: response = self._generate_strategic_response(user_input, decision, bodily_state) # 6. 更新用户模型 self._update_user_model(user_id, response, decision) # 7. 记录思考过程 self._record_thought_process(user_input, response, bodily_state, user_model, decision) # 检查输入是否与自我相关 stimulus = self._create_stimulus_from_input(user_input, user_id) if self.self_schema.is_part_of_self(stimulus): self._process_self_related(stimulus) self.logger.info(f"成功处理用户输入: '{user_input}'") return response except Exception as e: self.logger.error(f"处理用户输入失败: {str(e)}", exc_info=True) # 回退响应 return "思考中遇到问题,请稍后再试" # 示例使用 if __name__ == "__main__": # 测试CognitiveSystem类 from unittest.mock import MagicMock print("===== 测试CognitiveSystem类(含决策系统) =====") # 创建模拟agent mock_agent = MagicMock() # 创建模拟组件 mock_memory = MagicMock() mock_model_manager = MagicMock() mock_affective = MagicMock() mock_health = MagicMock() # 设置agent的属性 mock_agent.memory_system = mock_memory mock_agent.model_manager = mock_model_manager mock_agent.affective_system = mock_affective mock_agent.health_system = mock_health # 设置健康状态 mock_health.get_status.return_value = { "cpu_temp": 75, "memory_usage": 0.8, "energy": 45.0 } # 设置健康系统的record_activity方法 mock_health.record_activity = MagicMock() # 设置用户模型 mock_memory.get_user_model.return_value = { "trust_level": 0.8, "intimacy": 0.7, "preferences": {"物理学": 0.9, "艺术": 0.6}, "interaction_history": [ {"sentiment": 0.8, "response": "很高兴和你交流"} ], "attitude": "friendly" } # 设置模型管理器 mock_model = MagicMock() mock_model.generate_response.return_value = "量子纠缠是量子力学中的现象..." mock_model_manager.select_model.return_value = mock_model # 创建认知系统实例 ca = CognitiveSystem(agent=mock_agent) # 测试响应生成 print("--- 测试诚实响应 ---") response = ca.process_input("能解释量子纠缠吗?", "user123") print("生成的响应:", response) # 验证是否调用了record_activity print("是否调用了record_activity:", mock_health.record_activity.called) print("--- 测试策略响应 ---") # 强制设置决策类型为策略 ca.decision_system.make_decision = lambda ctx: { "type": "strategic", "strategy": "evasion", "reason": "测试回避策略" } response = ca.process_input("能解释量子纠缠吗?", "user123") print("生成的策略响应:", response) # 测试思考过程记录 print("最近的思考过程:", ca.get_recent_thoughts()) # 测试自我认知状态 print("自我认知状态:", ca.get_self_cognition()) print("===== 测试完成 =====") ” “PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\AI_System PS E:\AI_System> python -m venv venv PS E:\AI_System> source venv/bin/activate # Linux/Mac source: The term 'source' is not recognized as a name of a cmdlet, function, script file, or executable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again. PS E:\AI_System> venv\Scripts\activate # Windows (venv) PS E:\AI_System> pip install -r requirements.txt Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: accelerate==0.27.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 1)) (0.27.2) Requirement already satisfied: aiofiles==23.2.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 2)) (23.2.1) Requirement already satisfied: aiohttp==3.9.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 3)) (3.9.3) Requirement already satisfied: aiosignal==1.4.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 4)) (1.4.0) Requirement already satisfied: altair==5.5.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 5)) (5.5.0) Requirement already satisfied: annotated-types==0.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 6)) (0.7.0) Requirement already satisfied: ansicon==1.89.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 7)) (1.89.0) Requirement already satisfied: anyio==4.10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 8)) (4.10.0) Requirement already satisfied: async-timeout==4.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 9)) (4.0.3) Requirement already satisfied: attrs==25.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 10)) (25.3.0) Requirement already satisfied: bidict==0.23.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 11)) (0.23.1) Requirement already satisfied: blessed==1.21.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 12)) (1.21.0) Requirement already satisfied: blinker==1.9.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 13)) (1.9.0) Requirement already satisfied: certifi==2025.8.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 14)) (2025.8.3) Requirement already satisfied: cffi==1.17.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 15)) (1.17.1) Requirement already satisfied: charset-normalizer==3.4.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 16)) (3.4.3) Requirement already satisfied: click==8.2.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 17)) (8.2.1) Requirement already satisfied: colorama==0.4.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 18)) (0.4.6) Requirement already satisfied: coloredlogs==15.0.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 19)) (15.0.1) Requirement already satisfied: contourpy==1.3.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 20)) (1.3.2) Requirement already satisfied: cryptography==42.0.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 21)) (42.0.4) Requirement already satisfied: cycler==0.12.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 22)) (0.12.1) Requirement already satisfied: diffusers==0.26.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 23)) (0.26.3) Requirement already satisfied: distro==1.9.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 24)) (1.9.0) Requirement already satisfied: exceptiongroup==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 25)) (1.3.0) Requirement already satisfied: fastapi==0.116.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 26)) (0.116.1) Requirement already satisfied: ffmpy==0.6.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 27)) (0.6.1) Requirement already satisfied: filelock==3.19.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 28)) (3.19.1) Requirement already satisfied: Flask==3.0.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 29)) (3.0.2) Requirement already satisfied: Flask-SocketIO==5.3.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 30)) (5.3.6) Requirement already satisfied: flatbuffers==25.2.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 31)) (25.2.10) Requirement already satisfied: fonttools==4.59.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 32)) (4.59.1) Requirement already satisfied: frozenlist==1.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 33)) (1.7.0) Requirement already satisfied: fsspec==2025.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 34)) (2025.7.0) Requirement already satisfied: gpustat==1.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 35)) (1.1) Requirement already satisfied: gradio==4.19.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 36)) (4.19.2) Requirement already satisfied: gradio_client==0.10.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 37)) (0.10.1) Requirement already satisfied: h11==0.16.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 38)) (0.16.0) Requirement already satisfied: httpcore==1.0.9 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 39)) (1.0.9) Requirement already satisfied: httpx==0.28.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 40)) (0.28.1) Requirement already satisfied: huggingface-hub==0.21.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 41)) (0.21.3) Requirement already satisfied: humanfriendly==10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 42)) (10.0) Requirement already satisfied: idna==3.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 43)) (3.10) Requirement already satisfied: importlib_metadata==8.7.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 44)) (8.7.0) Requirement already satisfied: importlib_resources==6.5.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 45)) (6.5.2) Requirement already satisfied: itsdangerous==2.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 46)) (2.2.0) Requirement already satisfied: Jinja2==3.1.6 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 47)) (3.1.6) Requirement already satisfied: jinxed==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 48)) (1.3.0) Requirement already satisfied: jsonschema==4.25.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 49)) (4.25.1) Requirement already satisfied: jsonschema-specifications==2025.4.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 50)) (2025.4.1) Requirement already satisfied: kiwisolver==1.4.9 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 51)) (1.4.9) Requirement already satisfied: loguru==0.7.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 52)) (0.7.2) Requirement already satisfied: markdown-it-py==4.0.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 53)) (4.0.0) Requirement already satisfied: MarkupSafe==2.1.5 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 54)) (2.1.5) Requirement already satisfied: matplotlib==3.10.5 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 55)) (3.10.5) Requirement already satisfied: mdurl==0.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 56)) (0.1.2) Requirement already satisfied: mpmath==1.3.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 57)) (1.3.0) Requirement already satisfied: multidict==6.6.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 58)) (6.6.4) Requirement already satisfied: narwhals==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 59)) (2.1.2) Requirement already satisfied: networkx==3.4.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 60)) (3.4.2) Requirement already satisfied: numpy==1.26.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 61)) (1.26.3) Requirement already satisfied: nvidia-ml-py==13.580.65 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 62)) (13.580.65) Requirement already satisfied: onnxruntime==1.17.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 63)) (1.17.1) Requirement already satisfied: openai==1.13.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 64)) (1.13.3) Requirement already satisfied: orjson==3.11.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 65)) (3.11.2) Requirement already satisfied: packaging==25.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 66)) (25.0) Requirement already satisfied: pandas==2.1.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 67)) (2.1.4) Requirement already satisfied: pillow==10.4.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 68)) (10.4.0) Requirement already satisfied: prettytable==3.16.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 69)) (3.16.0) Requirement already satisfied: propcache==0.3.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 70)) (0.3.2) Requirement already satisfied: protobuf==6.32.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 71)) (6.32.0) Requirement already satisfied: psutil==5.9.7 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 72)) (5.9.7) Requirement already satisfied: pycparser==2.22 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 73)) (2.22) Requirement already satisfied: pydantic==2.11.7 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 74)) (2.11.7) Requirement already satisfied: pydantic_core==2.33.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 75)) (2.33.2) Requirement already satisfied: pydub==0.25.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 76)) (0.25.1) Requirement already satisfied: Pygments==2.19.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 77)) (2.19.2) Requirement already satisfied: pyparsing==3.2.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 78)) (3.2.3) Requirement already satisfied: pyreadline3==3.5.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 79)) (3.5.4) Requirement already satisfied: python-dateutil==2.9.0.post0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 80)) (2.9.0.post0) Requirement already satisfied: python-dotenv==1.0.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 81)) (1.0.1) Requirement already satisfied: python-engineio==4.12.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 82)) (4.12.2) Requirement already satisfied: python-multipart==0.0.20 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 83)) (0.0.20) Requirement already satisfied: python-socketio==5.13.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 84)) (5.13.0) Requirement already satisfied: pytz==2025.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 85)) (2025.2) Requirement already satisfied: pywin32==306 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 86)) (306) Requirement already satisfied: PyYAML==6.0.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 87)) (6.0.2) Requirement already satisfied: redis==5.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 88)) (5.0.3) Requirement already satisfied: referencing==0.36.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 89)) (0.36.2) Requirement already satisfied: regex==2025.7.34 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 90)) (2025.7.34) Requirement already satisfied: requests==2.31.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 91)) (2.31.0) Requirement already satisfied: rich==14.1.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 92)) (14.1.0) Requirement already satisfied: rpds-py==0.27.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 93)) (0.27.0) Requirement already satisfied: ruff==0.12.10 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 94)) (0.12.10) Requirement already satisfied: safetensors==0.4.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 95)) (0.4.2) Requirement already satisfied: semantic-version==2.10.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 96)) (2.10.0) Requirement already satisfied: shellingham==1.5.4 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 97)) (1.5.4) Requirement already satisfied: simple-websocket==1.1.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 98)) (1.1.0) Requirement already satisfied: six==1.17.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 99)) (1.17.0) Requirement already satisfied: sniffio==1.3.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 100)) (1.3.1) Requirement already satisfied: starlette==0.47.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 101)) (0.47.2) Requirement already satisfied: sympy==1.14.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 102)) (1.14.0) Requirement already satisfied: tokenizers==0.15.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 103)) (0.15.2) Requirement already satisfied: tomlkit==0.12.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 104)) (0.12.0) Requirement already satisfied: torch==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 105)) (2.1.2) Requirement already satisfied: tqdm==4.67.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 106)) (4.67.1) Requirement already satisfied: transformers==4.37.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 107)) (4.37.0) Requirement already satisfied: typer==0.16.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 108)) (0.16.1) Requirement already satisfied: typing-inspection==0.4.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 109)) (0.4.1) Requirement already satisfied: typing_extensions==4.14.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 110)) (4.14.1) Requirement already satisfied: tzdata==2025.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 111)) (2025.2) Requirement already satisfied: urllib3==2.5.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 112)) (2.5.0) Requirement already satisfied: uvicorn==0.35.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 113)) (0.35.0) Requirement already satisfied: waitress==2.1.2 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 114)) (2.1.2) Requirement already satisfied: wcwidth==0.2.13 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 115)) (0.2.13) Requirement already satisfied: websockets==11.0.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 116)) (11.0.3) Requirement already satisfied: Werkzeug==3.1.3 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 117)) (3.1.3) Requirement already satisfied: win32_setctime==1.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 118)) (1.2.0) Requirement already satisfied: wsproto==1.2.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 119)) (1.2.0) Requirement already satisfied: yarl==1.20.1 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 120)) (1.20.1) Requirement already satisfied: zipp==3.23.0 in e:\ai_system\venv\lib\site-packages (from -r requirements.txt (line 121)) (3.23.0) WARNING: typer 0.16.1 does not provide the extra 'all' [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (venv) PS E:\AI_System> python diagnose_modules.py ============================================================ 模块文件诊断报告 ============================================================ 🔍 检查 CognitiveSystem 模块: 预期路径: E:\AI_System\agent\cognitive_architecture.py ✅ 文件存在 ⚠️ 文件中包含相对导入,可能导致导入错误 ✅ 找到类定义: class CognitiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, name): 🔍 检查 EnvironmentInterface 模块: 预期路径: E:\AI_System\agent\environment_interface.py ✅ 文件存在 ✅ 找到类定义: class EnvironmentInterface ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, coordinator=None, config=None): 🔍 检查 AffectiveSystem 模块: 预期路径: E:\AI_System\agent\affective_system.py ✅ 文件存在 ✅ 找到类定义: class AffectiveSystem ✅ 类继承CognitiveModule ✅ 找到__init__方法 📋 初始化方法: def __init__(self, coordinator=None, config=None): ============================================================ 建议解决方案: ============================================================ 1. 检查每个模块文件中的相对导入语句 2. 确保每个模块类都正确继承CognitiveModule 3. 检查初始化方法的参数是否正确 4. 确保模块内部的导入使用绝对路径或正确处理相对导入 5. 考虑使用try-catch包装模块内部的导入语句 (venv) PS E:\AI_System> python tests/test_core_import.py 2025-08-27 20:50:46,505 - ImportTest - INFO - 脚本目录: E:\AI_System\tests 2025-08-27 20:50:46,505 - ImportTest - INFO - 项目根目录: E:\AI_System 2025-08-27 20:50:46,505 - ImportTest - INFO - 已将项目根目录添加到系统路径: E:\AI_System 2025-08-27 20:50:46,506 - CorePackage - INFO - 项目根目录: E:\AI_System 2025-08-27 20:50:51,497 - CorePackage - ERROR - ❌ 导入失败: No module named 'models.base_model' 2025-08-27 20:50:51,497 - CorePackage - WARNING - ⚠️ 创建占位符CognitiveModule 2025-08-27 20:50:51,505 - CoreConfig - INFO - 📂 从 E:\AI_System\config\default.json 加载配置: {'LOG_DIR': 'E:/AI_System/logs', 'CONFIG_DIR': 'E:/AI_System/config', 'MODEL_CACHE_DIR': 'E:/AI_System/model_cache', 'AGENT_NAME': '小蓝', 'DEFAULT_USER': '管理员', 'MAX_WORKERS': 4, 'AGENT_RESPONSE_TIMEOUT': 30.0, 'MODEL_BASE_PATH': 'E:/AI_Models', 'MODEL_PATHS': {'TEXT_BASE': 'E:/AI_Models/Qwen2-7B', 'TEXT_CHAT': 'E:/AI_Models/deepseek-7b-chat', 'MULTIMODAL': 'E:/AI_Models/deepseek-vl2', 'IMAGE_GEN': 'E:/AI_Models/sdxl', 'YI_VL': 'E:/AI_Models/yi-vl', 'STABLE_DIFFUSION': 'E:/AI_Models/stable-diffusion-xl-base-1.0'}, 'NETWORK': {'HOST': '0.0.0.0', 'FLASK_PORT': 8000, 'GRADIO_PORT': 7860}, 'DATABASE': {'DB_HOST': 'localhost', 'DB_PORT': 5432, 'DB_NAME': 'ai_system', 'DB_USER': 'ai_user', 'DB_PASSWORD': 'secure_password_here'}, 'SECURITY': {'SECRET_KEY': 'generated-secret-key-here'}, 'ENVIRONMENT': {'ENV': 'dev', 'LOG_LEVEL': 'DEBUG', 'USE_GPU': True}, 'DIRECTORIES': {'DEFAULT_MODEL': 'E:/AI_Models/Qwen2-7B', 'WEB_UI_DIR': 'E:/AI_System/web_ui', 'AGENT_DIR': 'E:/AI_System/agent'}} 2025-08-27 20:50:51,505 - CoreConfig - INFO - 📂 从 E:\AI_System\config\default.json 加载配置: {'LOG_DIR': 'E:/AI_System/logs', 'CONFIG_DIR': 'E:/AI_System/config', 'MODEL_CACHE_DIR': 'E:/AI_System/model_cache', 'AGENT_NAME': '小蓝', 'DEFAULT_USER': '管理员', 'MAX_WORKERS': 4, 'AGENT_RESPONSE_TIMEOUT': 30.0, 'MODEL_BASE_PATH': 'E:/AI_Models', 'MODEL_PATHS': {'TEXT_BASE': 'E:/AI_Models/Qwen2-7B', 'TEXT_CHAT': 'E:/AI_Models/deepseek-7b-chat', 'MULTIMODAL': 'E:/AI_Models/deepseek-vl2', 'IMAGE_GEN': 'E:/AI_Models/sdxl', 'YI_VL': 'E:/AI_Models/yi-vl', 'STABLE_DIFFUSION': 'E:/AI_Models/stable-diffusion-xl-base-1.0'}, 'NETWORK': {'HOST': '0.0.0.0', 'FLASK_PORT': 8000, 'GRADIO_PORT': 7860}, 'DATABASE': {'DB_HOST': 'localhost', 'DB_PORT': 5432, 'DB_NAME': 'ai_system', 'DB_USER': 'ai_user', 'DB_PASSWORD': 'secure_password_here'}, 'SECURITY': {'SECRET_KEY': 'generated-secret-key-here'}, 'ENVIRONMENT': {'ENV': 'dev', 'LOG_LEVEL': 'DEBUG', 'USE_GPU': True}, 'DIRECTORIES': {'DEFAULT_MODEL': 'E:/AI_Models/Qwen2-7B', 'WEB_UI_DIR': 'E:/AI_System/web_ui', 'AGENT_DIR': 'E:/AI_System/agent'}} 2025-08-27 20:50:51,505 - CoreConfig - INFO - 📂 从 E:\AI_System\config\local.json 加载配置: {} 2025-08-27 20:50:51,505 - CoreConfig - INFO - 📂 从 E:\AI_System\config\local.json 加载配置: {} 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🌐 从 E:\AI_System\.env 加载环境变量 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🌐 从 E:\AI_System\.env 加载环境变量 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🔄 环境变量覆盖: AGENT_DIR=E:/AI_System/agent 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🔄 环境变量覆盖: AGENT_DIR=E:/AI_System/agent 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🔄 环境变量覆盖: WEB_UI_DIR=E:/AI_System/web_ui 2025-08-27 20:50:51,506 - CoreConfig - INFO - 🔄 环境变量覆盖: WEB_UI_DIR=E:/AI_System/web_ui 2025-08-27 20:50:51,506 - CoreConfig - INFO - ✅ 配置系统初始化完成 2025-08-27 20:50:51,506 - CoreConfig - INFO - ✅ 配置系统初始化完成 2025-08-27 20:50:51,506 - ImportTest - ERROR - ❌ 测试过程中发生错误: cannot import name 'utils' from partially initialized module 'core' (most likely due to a circular import) (E:\AI_System\core\__init__.py) 2025-08-27 20:50:51,506 - ImportTest - ERROR - 详细堆栈跟踪: 2025-08-27 20:50:51,506 - ImportTest - ERROR - Traceback (most recent call last): File "E:\AI_System\tests\test_core_import.py", line 29, in <module> from core import CognitiveModule File "E:\AI_System\core\__init__.py", line 37, in <module> from . import utils ImportError: cannot import name 'utils' from partially initialized module 'core' (most likely due to a circular import) (E:\AI_System\core\__init__.py) (venv) PS E:\AI_System> python diagnose_architecture.py ❌ 导入失败: No module named 'models.base_model' ⚠️ 创建占位符CognitiveModule 2025-08-27 20:50:57,088 - CoreConfig - INFO - 📂 从 E:\AI_System\config\default.json 加载配置: {'LOG_DIR': 'E:/AI_System/logs', 'CONFIG_DIR': 'E:/AI_System/config', 'MODEL_CACHE_DIR': 'E:/AI_System/model_cache', 'AGENT_NAME': '小蓝', 'DEFAULT_USER': '管理员', 'MAX_WORKERS': 4, 'AGENT_RESPONSE_TIMEOUT': 30.0, 'MODEL_BASE_PATH': 'E:/AI_Models', 'MODEL_PATHS': {'TEXT_BASE': 'E:/AI_Models/Qwen2-7B', 'TEXT_CHAT': 'E:/AI_Models/deepseek-7b-chat', 'MULTIMODAL': 'E:/AI_Models/deepseek-vl2', 'IMAGE_GEN': 'E:/AI_Models/sdxl', 'YI_VL': 'E:/AI_Models/yi-vl', 'STABLE_DIFFUSION': 'E:/AI_Models/stable-diffusion-xl-base-1.0'}, 'NETWORK': {'HOST': '0.0.0.0', 'FLASK_PORT': 8000, 'GRADIO_PORT': 7860}, 'DATABASE': {'DB_HOST': 'localhost', 'DB_PORT': 5432, 'DB_NAME': 'ai_system', 'DB_USER': 'ai_user', 'DB_PASSWORD': 'secure_password_here'}, 'SECURITY': {'SECRET_KEY': 'generated-secret-key-here'}, 'ENVIRONMENT': {'ENV': 'dev', 'LOG_LEVEL': 'DEBUG', 'USE_GPU': True}, 'DIRECTORIES': {'DEFAULT_MODEL': 'E:/AI_Models/Qwen2-7B', 'WEB_UI_DIR': 'E:/AI_System/web_ui', 'AGENT_DIR': 'E:/AI_System/agent'}} 2025-08-27 20:50:57,088 - CoreConfig - INFO - 📂 从 E:\AI_System\config\local.json 加载配置: {} 2025-08-27 20:50:57,088 - CoreConfig - INFO - 🌐 从 E:\AI_System\.env 加载环境变量 2025-08-27 20:50:57,088 - CoreConfig - INFO - 🔄 环境变量覆盖: AGENT_DIR=E:/AI_System/agent 2025-08-27 20:50:57,088 - CoreConfig - INFO - 🔄 环境变量覆盖: WEB_UI_DIR=E:/AI_System/web_ui 2025-08-27 20:50:57,088 - CoreConfig - INFO - ✅ 配置系统初始化完成 Traceback (most recent call last): File "E:\AI_System\diagnose_architecture.py", line 8, in <module> from core.module_registry import validate_module_structure File "E:\AI_System\core\__init__.py", line 37, in <module> from . import utils ImportError: cannot import name 'utils' from partially initialized module 'core' (most likely due to a circular import) (E:\AI_System\core\__init__.py) (venv) PS E:\AI_System>”
08-28
C:\Users\14432\AppData\Local\Temp\ipykernel_11544\1142950157.py:280: UserWarning: 警告: Pandas需要numexpr 2.8.4+ (当前 2.10.2) warnings.warn(msg) A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "C:\Users\14432\anaconda3\lib\runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\14432\anaconda3\lib\runpy.py", line 87, in _run_code exec(code, run_globals) File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel_launcher.py", line 16, in <module> app.launch_new_instance() File "C:\Users\14432\anaconda3\lib\site-packages\traitlets\config\application.py", line 846, in launch_instance app.start() File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 677, in start self.io_loop.start() File "C:\Users\14432\anaconda3\lib\site-packages\tornado\platform\asyncio.py", line 199, in start self.asyncio_loop.run_forever() File "C:\Users\14432\anaconda3\lib\asyncio\base_events.py", line 601, in run_forever self._run_once() File "C:\Users\14432\anaconda3\lib\asyncio\base_events.py", line 1905, in _run_once handle._run() File "C:\Users\14432\anaconda3\lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, *self._args) File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 471, in dispatch_queue await self.process_one() File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 460, in process_one await dispatch(*args) File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 367, in dispatch_shell await result File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 662, in execute_request reply_content = await reply_content File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 360, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "C:\Users\14432\anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 532, in run_cell return super().run_cell(*args, **kwargs) File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2863, in run_cell result = self._run_cell( File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2909, in _run_cell return runner(coro) File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner coro.send(None) File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3106, in run_cell_async has_raised = await self.run_ast_nodes(code_ast.body, cell_name, File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3309, in run_ast_nodes if await self.run_code(code, result, async_=asy): File "C:\Users\14432\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3369, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "C:\Users\14432\AppData\Local\Temp\ipykernel_11544\1142950157.py", line 543, in <cell line: 542> app = Application() File "C:\Users\14432\AppData\Local\Temp\ipykernel_11544\1142950157.py", line 268, in __init__ self._check_dependencies() File "C:\Users\14432\AppData\Local\Temp\ipykernel_11544\1142950157.py", line 303, in _check_dependencies import paddleocr File "C:\Users\14432\anaconda3\lib\site-packages\paddleocr\__init__.py", line 15, in <module> from paddlex.inference.utils.benchmark import benchmark File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\__init__.py", line 49, in <module> from .inference import create_pipeline, create_predictor File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\inference\__init__.py", line 16, in <module> from .models import create_predictor File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\inference\models\__init__.py", line 26, in <module> from .anomaly_detection import UadPredictor File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\inference\models\anomaly_detection\__init__.py", line 15, in <module> from .predictor import UadPredictor File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\inference\models\anomaly_detection\predictor.py", line 19, in <module> from ....modules.anomaly_detection.model_list import MODELS File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\modules\__init__.py", line 16, in <module> from .anomaly_detection import UadDatasetChecker, UadEvaluator, UadExportor, UadTrainer File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\modules\anomaly_detection\__init__.py", line 15, in <module> from .dataset_checker import UadDatasetChecker File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\modules\anomaly_detection\dataset_checker\__init__.py", line 21, in <module> from .dataset_src import anaylse_dataset, check_dataset, convert_dataset, split_dataset File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\modules\anomaly_detection\dataset_checker\dataset_src\__init__.py", line 16, in <module> from .analyse_dataset import anaylse_dataset File "C:\Users\14432\anaconda3\lib\site-packages\paddlex\modules\anomaly_detection\dataset_checker\dataset_src\analyse_dataset.py", line 26, in <module> import matplotlib.pyplot as plt File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\__init__.py", line 109, in <module> from . import _api, _version, cbook, docstring, rcsetup File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\rcsetup.py", line 27, in <module> from matplotlib.colors import Colormap, is_color_like File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\colors.py", line 56, in <module> from matplotlib import _api, cbook, scale File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\scale.py", line 23, in <module> from matplotlib.ticker import ( File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\ticker.py", line 136, in <module> from matplotlib import transforms as mtransforms File "C:\Users\14432\anaconda3\lib\site-packages\matplotlib\transforms.py", line 46, in <module> from matplotlib._path import ( --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) AttributeError: _ARRAY_API not found --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Input In [1], in <cell line: 542>() 540 threading.Thread(target=thread_task, daemon=True).start() 542 if __name__ == "__main__": --> 543 app = Application() 544 app.mainloop() Input In [1], in Application.__init__(self) 266 self.processing = False 267 self._setup_ui() --> 268 self._check_dependencies() Input In [1], in Application._check_dependencies(self) 315 try: 316 import pdf2image --> 317 self.log_message(f"pdf2image版本: {pdf2image.__version__}") 318 except ImportError: 319 self.log_message("警告: pdf2image未安装") AttributeError: module 'pdf2image' has no attribute '__version__'
最新发布
09-15
<think>我们正在解决一个导入错误:ImportError: cannot import name 'transforms' from 'albumentations.augmentations' 根据引用[2]中的内容,我们看到在代码中使用了`from albumentations import Resize`,但出现了错误`ImportError: cannot import name ‘Resize‘ from ‘albumentations.augmentations.transforms`。 注意,引用[2]中实际导入的方式是:`import albumentations as albu`,然后使用`albu.Resize`。但是错误提示中提到了`albumentations.augmentations.transforms`,这可能是旧版本中的模块路径。 在albumentations库中,`augmentations.transforms`模块在较新的版本中已经被重构。从1.0版本开始,albumentations进行了重大更新,许多模块的路径发生了变化。 在旧版本(例如0.5.x)中,我们可以这样导入: from albumentations.augmentations.transforms import Resize 但是在新版本中,推荐直接使用顶层导入,例如: from albumentations import Resize 或者使用: import albumentations as A transform = A.Resize(...) 因此,错误`ImportError: cannot import name transforms from albumentations.augmentations`可能是因为尝试从错误的路径导入。 用户的问题中写的是:`cannot import name transforms`,注意是`transforms`(复数形式)而不是`transforms`模块中的某个类(如Resize)。所以可能是用户试图导入一个名为`transforms`的模块或对象。 在albumentations库中,并没有一个名为`transforms`的顶级模块或对象。在旧版本中,有一个`albumentations.augmentations.transforms`模块,但新版本中已经不再使用。 因此,解决方法如下: 1. 检查albumentations的版本。如果是旧版本(0.x),则可以使用`from albumentations.augmentations.transforms import ...`,但建议升级到新版本并修改导入方式。 2. 在新版本中,应该使用顶层的augmentation类,或者通过`albumentations.pytorch.transforms`来导入与PyTorch相关的转换(但注意,这也不是名为`transforms`的模块)。 另外,引用[2]中的代码示例展示了如何导入和使用: import albumentations as albu albu.Resize(...) 因此,如果用户想要使用`transforms`,可能是受到了其他库(如torchvision)的影响。在albumentations中,通常不这样导入。 建议用户修改代码,避免导入`transforms`,而是直接导入需要的转换类(如Resize, RandomCrop等)从顶层模块。 例如,将: from albumentations.augmentations import transforms # 错误的导入方式 改为: from albumentations import Resize, RandomCrop, ... # 直接导入具体的类 或者使用别名: import albumentations as A 然后使用A.Resize, A.RandomCrop等。 另外,检查安装的albumentations版本,如果版本过旧,可能需要升级。升级命令: pip install -U albumentations 如果用户确实需要从`transforms`模块导入(例如,使用旧版本且不能升级),那么应该使用完整的路径: from albumentations.augmentations.transforms import Resize 但请注意,在最新版本中,这个路径已经不存在了。 总结:根据错误信息,用户可能在使用旧版本的代码,但安装了新版本的库,或者反过来。因此,需要统一版本和导入方式。 步骤: 1. 确认albumentations版本:`pip show albumentations` 2. 如果版本>=1.0.0,则使用顶层导入(如`from albumentations import Resize`)。 3. 如果版本<1.0.0,则使用`from albumentations.augmentations.transforms import ...`。 但是,考虑到兼容性和未来维护,建议升级到最新版本并修改导入方式。 根据引用[2]中的代码,他们使用的是`albu.Resize`,这是正确的,因为`albu`是`albumentations`的别名,而`Resize`是顶层可访问的类。 因此,用户应该将代码中的导入语句修改为直接导入具体的类(如Resize)或者使用别名导入。 例如,将: from albumentations.augmentations import transforms # 错误的 改为: import albumentations as A # 然后使用A.Resize等 或者,如果用户想使用类似于`transforms`的名字,可以这样(但不推荐,因为容易混淆): import albumentations as transforms # 然后使用transforms.Resize 但这样容易与torchvision的transforms混淆,所以推荐使用`A`作为别名。 因此,针对用户的问题,解决方案是修改导入方式,不再尝试从`albumentations.augmentations`导入`transforms`,因为在新版本中这个子模块已经不存在了。 如果用户确实需要保留旧代码,可以降级albumentations到0.5.x版本,但这不是推荐的做法。 所以,我们给出两种解决方案: 方案一(推荐): 升级albumentations到最新版本,并修改导入方式为顶层导入。 方案二: 降级albumentations到0.5.2版本(例如),继续使用旧的导入方式。 通常,我们推荐方案一,因为新版本有更多的特性和修复。 具体步骤: 1. 升级albumentations: pip install --upgrade albumentations 2. 修改代码中的导入语句,例如: 旧代码(可能): from albumentations.augmentations import transforms # 错误 # 或者 from albumentations.augmentations.transforms import Resize # 在旧版本中可用,新版本不可用 新代码: import albumentations as A # 然后在代码中使用A.Resize, A.RandomCrop等 或者: from albumentations import Resize, RandomCrop, ... 注意:在引用[2]中,他们使用了`albu.Resize`,所以用户可以参考这种方式。 如果用户仍然遇到问题,请检查代码中是否有其他过时的导入方式。 另外,引用[3]中提到了一些其他错误的解决方法,但与本问题无关。引用[4]是关于anomalib库的,也不直接相关。 因此,我们主要依据引用[2]中的代码示例来指导用户修改导入方式。 结论:用户需要更新导入语句,使用新版本的albumentations的导入方式。</think>要解决 `ImportError: cannot import name 'transforms' from 'albumentations.augmentations'` 错误,需根据 Albumentations 库的版本调整导入方式。以下是具体解决方案: ### 错误原因分析 1. **版本不兼容**: Albumentations ≥1.0 版本重构了模块结构,移除了 `augmentations.transforms` 子模块[^2][^3]。 若代码基于旧版本(如 0.5.x)编写,在新版本中会因路径变更而报错。 2. **错误导入方式**: 尝试直接从 `albumentations.augmentations` 导入 `transforms`(该对象在新版本中不存在)。 --- ### 解决方案 #### ✅ 方案一:升级代码至新版本规范(推荐) ```python # 旧版本代码(已废弃): from albumentations.augmentations import transforms # 错误方式 # 新版本正确写法: import albumentations as A # 使用标准别名 # 直接调用转换类 transform = A.Compose([ A.Resize(height=256, width=256), # 直接使用 Resize A.RandomCrop(height=224, width=224), A.HorizontalFlip(p=0.5), A.Normalize() ]) ``` **关键修改**: - 删除所有对 `transforms` 的显式导入 - 通过 `A.ClassName` 直接调用转换操作(如 `A.Resize`)[^2] #### ✅ 方案二:降级库版本(兼容旧代码) 若需维持旧版代码逻辑,降级至 0.5.x 版本: ```bash pip uninstall albumentations pip install albumentations==0.5.2 # 最后一个包含 transforms 的版本 ``` 随后使用旧导入方式: ```python from albumentations.augmentations.transforms import Resize, RandomCrop # 0.5.x 有效 ``` --- ### 验证步骤 1. **检查当前版本**: ```bash pip show albumentations # 查看版本号 ``` - ≥1.0:采用 **方案一** - ≤0.5.x:采用 **方案二** 2. **调整导入语法**: 根据版本选择上述对应方案修改代码。 3. **测试导入**: ```python import albumentations as A print(A.__version__) # 确认版本 print(A.Resize) # 验证类能否访问 ``` --- ### 附加说明 - **新版本优势**:Albumentations ≥1.0 优化了性能并修复了旧版 bug,建议优先升级代码[^2][^3]。 - **常见转换类对照表**: | 旧版导入路径 (0.5.x) | 新版调用方式 (≥1.0) | |----------------------------|----------------------| | `from ...transforms import Resize` | `A.Resize` | | `from ...transforms import RandomCrop` | `A.RandomCrop` | | `from ...transforms import Normalize` | `A.Normalize` |
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值