uva 10534 - Wavio Sequence (dp)

Problem D
Wavio Sequence
Input:
Standard Input

Output: Standard Output

Time Limit: 2 Seconds

Wavio is a sequence of integers. It has some interesting properties.

· Wavio is of odd length i.e. L = 2*n + 1.

· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.

· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.

· No two adjacent integers are same in a Wavio sequence.

For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length9. But1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :

1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.


Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be9.

Input

The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.

Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will beN integers.

Output

For each set of input print the length of longest wavio sequence in a line.

Sample Input Output for Sample Input

10
1 2 3 4 5 4 3 2 1 10
19
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1
5
1 2 3 4 5
 
9
9
1


Problemsetter: Md. Kamruzzaman, Member of Elite Problemsetters' Panel

 

经典的最长上升子序列的变形题

必须用nlogn的解法,这个类似单调队列的做法严格上来说已经不是dp了

容易想到枚举个位置作为“浪尖”,从前往后扫一遍,求最大的
需要预处理出起始位置到 i 的最长上升序列,和 i 到末尾位置的最长下降序列
 
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int num[10005],increase[10005],decrease[10005];
vector <int> vi(10000),vd(10000);
vector <int>::iterator it;

int main(){
    int n;

    while(scanf("%d",&n) != EOF){
        vi.clear();vd.clear();
        int top;
        for(int i = 0;i < n;i++)
            cin >> num[i];
        //先算一遍最长上升序列
        vi.push_back(num[0]);
        increase[0] = 1;
        top = 0;
        for(int i = 1;i < n;i++){
            if(num[i] > vi[top]){
                top++;
                vi.push_back(num[i]);
            }
            else{
                it = lower_bound(vi.begin(),vi.end(),num[i]);
                *it = num[i];
            }
            increase[i] = top+1;
        }
        //再倒着算一遍上升序列,即正着的下降序列
        vd.push_back(num[n-1]);
        decrease[n-1] = 1;
        top = 0;
        for(int i = n-2;i >= 0;i--){
            if(num[i] > vd[top]){
                top++;
                vd.push_back(num[i]);
            }
            else{
                it = lower_bound(vd.begin(),vd.end(),num[i]);
                *it = num[i];
            }
            decrease[i] = top+1;
        }
        //然后从左到右扫一遍,看以哪个位置为“浪尖”,浪波序列最长
        int ans = 1,tem;
        for(int i = 0;i < n;i++){
            tem = min(increase[i],decrease[i]);
            ans = max(tem*2-1,ans);
        }
        cout << ans << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值