Problem D
Wavio Sequence
Input: Standard Input
Output: Standard Output
Time Limit: 2 Seconds
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length9. But1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will beN integers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 | 9 9 1
|
Problemsetter: Md. Kamruzzaman, Member of Elite Problemsetters' Panel
经典的最长上升子序列的变形题
必须用nlogn的解法,这个类似单调队列的做法严格上来说已经不是dp了
容易想到枚举个位置作为“浪尖”,从前往后扫一遍,求最大的#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int num[10005],increase[10005],decrease[10005];
vector <int> vi(10000),vd(10000);
vector <int>::iterator it;
int main(){
int n;
while(scanf("%d",&n) != EOF){
vi.clear();vd.clear();
int top;
for(int i = 0;i < n;i++)
cin >> num[i];
//先算一遍最长上升序列
vi.push_back(num[0]);
increase[0] = 1;
top = 0;
for(int i = 1;i < n;i++){
if(num[i] > vi[top]){
top++;
vi.push_back(num[i]);
}
else{
it = lower_bound(vi.begin(),vi.end(),num[i]);
*it = num[i];
}
increase[i] = top+1;
}
//再倒着算一遍上升序列,即正着的下降序列
vd.push_back(num[n-1]);
decrease[n-1] = 1;
top = 0;
for(int i = n-2;i >= 0;i--){
if(num[i] > vd[top]){
top++;
vd.push_back(num[i]);
}
else{
it = lower_bound(vd.begin(),vd.end(),num[i]);
*it = num[i];
}
decrease[i] = top+1;
}
//然后从左到右扫一遍,看以哪个位置为“浪尖”,浪波序列最长
int ans = 1,tem;
for(int i = 0;i < n;i++){
tem = min(increase[i],decrease[i]);
ans = max(tem*2-1,ans);
}
cout << ans << endl;
}
return 0;
}