Description
给出A,B,C,D,E,F的坐标,求H和G点坐标使得平行四边形ABGH的面积与三角形DEF面积相等
Input
多组用例,每组用例十二个实数表示六个点的横纵坐标,以12个0结束输入
Output
对于每组用例,输出G点和H点的横纵坐标
Sample Input
0 0 5 0 0 5 3 2 7 2 0 4
1.3 2.6 12.1 4.5 8.1 13.7 2.2 0.1 9.8 6.6 1.9 6.7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sample Output
5.000 0.800 0.000 0.800
13.756 7.204 2.956 5.304
Solution
先求出以AB和AC为边的平行四边形面积和三角形DEF的面积,这两个面积的比值就是AC与AH长度的比值,然后就可以求出H点坐标,G点坐标通过A,B,H三点既可得到
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 1111
struct node
{
double x,y;
void in()
{
scanf("%lf%lf",&x,&y);
}
}A,B,C,D,E,F,G,H;
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double angle(node a,node b,node c)
{
double x1=b.x-a.x,y1=b.y-a.y;
double x2=c.x-a.x,y2=c.y-a.y;
return abs(x1*x2+y1*y2)/(dis(a,c)*dis(a,b));
}
double area(node a,node b,node c)
{
double x1=b.x-a.x,y1=b.y-a.y;
double x2=c.x-a.x,y2=c.y-a.y;
return abs(x1*y2-x2*y1)*0.5;
}
int main()
{
while(1)
{
A.in(),B.in(),C.in(),D.in(),E.in(),F.in();
if(A.x==0.&&A.y==0.&&B.x==0.&&B.y==0.&&C.x==0.&&C.y==0.&&D.x==0.&&D.y==0.&&E.x==0.&&E.y==0.&&F.x==0.&&F.y==0.)
break;
double S=2.0*area(A,B,C),s=area(D,E,F);
double d=S/s;
H.x=(C.x+(d-1.0)*A.x)/d,H.y=(C.y+(d-1.0)*A.y)/d;
G.x=B.x+H.x-A.x,G.y=B.y+H.y-A.y;
printf("%.3f %.3f %.3f %.3f\n",G.x,G.y,H.x,H.y);
}
return 0;
}