ChatTuGraph:通过大模型“与图对话”

作者:范志东

使用SQL(Structured Query Language)对数据库/数据仓库进行查询分析操作,几乎成了研发工程师和数据分析师的“家常便饭”,然而要写出高效、清晰、优雅的SQL脚本并非易事。随着大语言模型(LLM)技术的普及,借助大模型微调(Fine Tuning)等技术将自然语言自动翻译为SQL语句(NL2SQL/Text2SQL)便成了非常流行的解决方案,相关的工具框架(Chat2DBDB-GPT等)也是层出不穷。

同样的,在图数据库领域也存在相似的问题,甚至更为严峻。相比于SQL相对成熟的语法标准(SQL2023),图查询语言尚未形成成熟的统一标准,目前是多种查询语法并存的状态(GQLPGQCypherGremlinGSQL等),上手门槛高,因此更需要借助大语言模型的自然语言理解能力,降低图数据库查询语言的使用门槛。

1. 图表融合:SQL+GQL

TuGraph计算引擎TuGraph Analytics创新性地设计了SQL+GQL融合语法,以解决图表混合分析场景的业务诉求,将图上的分析计算能力有机地融合到传统的SQL数据处理链路内,实现了图引擎上一体化的图数据建模图数据集成图存储图交互式分析能力。

TuGraph Analytics的SQL+GQL融合语法典型形式为**“SELECT-FROM-WITH-MATCH-RETURN”**结构,通过GQL语法的“MATCH-RETURN”语法单元,为SQL处理提供数据子视图,方便传统数据分析师对数据的进一步处理。

图表融合处理代码示例

通过以上的语法设计,可以满足多样化的图表融合处理的诉求。点边数据源提供构图数据,Request数据源提供图计算触发的起点集合。

图表融合处理典型链路

不同的数据源处理模式的组合,形成了多种“流”与“图”的混合计算形态。而SQL+GQL的融合语法设计,可以很好地表达多样化的计算模式。

多样化的图表混合处理模式

2. 与图对话:ChatTuGraph

我们不否认SQL+GQL融合语法是一个创见性的语言设计,但这并不能解决“新型图查询语言的高上手门槛”这个通病,因此,借助于LLM微调实现专有的图查询语言模型,通过自然语言的方式与图数据交互,实现“与图对话(Chat-to-Graph/Chat-TuGraph)”。

我们初步构想了面向未来的图数据库智能化能力,至少具备以下产品形态:

  1. 智能交互分析:通过Agent发送图查询指令,同步获取图数据结果。
  2. 智能数据变更:通过Agent发送图变更指令,修改图数据,获取修改状态(成功与否、影响
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值