神经网络介绍-激活函数、参数初始化、模型的搭建

1、深度学习了解

1.1 深度学习简介

机器学习:获取数据–特征提取–分类器–输出
深度学习:获取数据–深度学习 --输出
深度学习是机器学习的一个子集,不需要手工设计特征,可解释性差,效果好
应用场景:图像识别、语音识别、机器翻译、自动驾驶

发展历史:
1989年:反向传播算法
2012年:李飞飞imageNet首次使用深度学习
2019年:transformer

1.2 神经网络

神经网络:人工神经网络,是一种模仿生物神经网络结构和功能的计算模型。
神经元之间传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号
神经网络:对每个神经元的输入进行加权和,送入激活函数后进行输出
输入层:对应的输入数据
隐藏层:输入与输出之间的
输出层:获取输出的

特点:
1,每一层的神经元之间没有连接
2,当前层的输入是上一层神经元的输出
3,数据传输过程:输入->隐藏层->输出层
在这里插入图片描述
神经元工作:
对每个人神经元的输入进行加权和,送入激活函数后进行输出
在这里插入图片描述

2、神经网络的工作流程

2.1 激活函数

激活函数作用:向神经网络中引入非线性因素
通过激活函数,神经网络可以拟合各种曲线。如果不用激活函数,每一层输出都是上一层输入的线性函数。

2.1.1 Sigmoid/Logistics函数

在这里插入图片描述
处处可导
在x足够小或者足够大的时候,导数为0,在反向传播的过程中,导致了向低层传递的梯度也变得⾮常⼩。此时,⽹络参数很难得到有效训练。这种现象被称为梯度消失。
sigmoid一般只用于二分类的输出层。将神经网络的输出结果送入Sigmoid,输出概率值

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-10,10,1000)
y = tf.nn.sigmoid(x)
plt.plot(x,y)
plt.grid()

在这里插入图片描述

2.1.2 tanh(双曲正切曲线)

上面的sigmiod曲线的中心点不在原地,所以出现了tanh
在这里插入图片描述
y范围:-1到1
tanh函数是以0为中心的,收敛速度比sigmoid快(更陡峭),减少迭代次数,两侧的导数为0,同样会造成梯度消失。
使用时,可在隐藏层使用tanh函数,在输出层使用sigmoid函数

x = np.linspace(-10,10,100)
y = tf.nn.tanh(x)
plt.plot(x,y)
plt.grid()

在这里插入图片描述

2.1.3 RELU

在这里插入图片描述
ReLU是目前最常用的激活函数,
在x<0时,ReLU导数为0,落入小于0区域时,权重无法更新,这种称为“神经元死亡”,缓解过拟合问题
在x>0时,是其本身,缓解梯度消失问题
与sigmoid相比,RELU的优势:
1,采用sigmoid函数时计算量大,而采用Relu时,计算量会节省很多
2,sigmiod容易出现梯度消失问题,从而无法完成深层网络的训练
3,Relu会使得一部分神经元的输出为0,造成网络的稀疏性,减少了参数的相互依存关系,缓解过拟合问题

x = linespace(-10,10,100)
y = tf.nn.relu(x)
plt.plot(x,y)
plt.grid()

在这里插入图片描述
无脑使用relu

### Flink 大数据处理优化技巧与最佳实践 #### 调优原则与方法概述 对于Flink SQL作业中的大状态导致的反压问题,调优的核心在于减少状态大小以及提高状态访问效率。通过合理配置参数和调整逻辑设计可以有效缓解此类瓶颈[^1]。 #### 参数设置建议 针对不同版本下的具体特性差异,在实施任何性能改进措施前应当充分理解当前使用的Flink版本特点及其局限性;同时也要考虑特定应用场景的需求特征来定制化解决方案。这包括但不限于并行度设定、内存分配策略等方面的选择[^2]。 #### 数据流模式优化 采用广播变量机制可作为一种有效的手段用于降低主数据流转过程中所需维护的状态量级。当存在一对多关系的数据集间需频繁交互时,将较小规模的一方作为广播状态保存下来供另一方查询匹配使用不失为明智之举。此方式特别适用于维表Join操作中,其中一方变动相对较少但又必须保持最新记录的情况[^3]。 ```sql -- 创建临时视图以支持后续JOIN操作 CREATE TEMPORARY VIEW dim_table AS SELECT * FROM kafka_source; -- 定义Temporal Table Function以便获取指定时间点上的历史快照 CREATE FUNCTION hist_dim_table AS 'com.example.HistoricalDimTableFunction'; -- 执行带有时态条件约束的JOIN语句 SELECT o.order_id, d.product_name FROM orders o LEFT JOIN LATERAL TABLE(hist_dim_table(o.event_time)) AS d ON o.product_id = d.id; ``` 上述代码片段展示了如何利用Flink SQL实现基于时间戳的历史维度表连接功能,从而确保每次都能准确捕捉到事件发生瞬间对应的最恰当的产品名称信息。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值