RT-DETR使用教程: RT-DETR使用教程
RT-DETR改进汇总贴:RT-DETR更新汇总贴
《MogaNet: Multi-order Gated Aggregation Network》
一、 模块介绍
论文链接:https://arxiv.org/abs/2211.03295
代码链接:https://github.com/AIFengheshu/Plug-play-modules
论文速览:
通过将内核尽可能全局化,现代 ConvNet 在计算机视觉任务中显示出巨大的潜力。然而,深度神经网络(DNN)中多阶博弈论交互的最新进展揭示了现代ConvNet的表示瓶颈,即随着核大小的增加,表达互没有得到有效编码。为了应对这一挑战,我们提出了一个新的现代 ConvNet 系列,称为 MogaNet,用于在纯基于 ConvNet 的模型中进行判别视觉表示学习,并具有良好的复杂性-性能权衡。MogaNet将概念上简单而有效的卷积和门控聚合封装到一个紧凑的模块中,其中有效地收集了判别特征并自适应地进行情境化。与 ImageNet 上最先进的 ViT 和 ConvNet 以及各种下游视觉基准测试(包括 COCO 对象检测、ADE20K 语义分割、2D 和 3D 人体姿态估计和视频预测)相比,MogaNet 表现出强大的可扩展性、令人印象深刻的参数效率和具有竞争力的性能。
总结:本文更新其中ChannelAggregationFFN模块的
⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐
二、二创融合模块
2.1 相关代码
# MogaNet: Multi-order Gated Aggregation Network
# https://arxiv.org/pdf/2211.03295
# https://blog.csdn.net/StopAndGoyyy?spm=1011.2124.3001.5343
# https://github.com/AIFengheshu/Plug-play-modules
def build_act_layer(act_type):
#Build activation layer
if act_type is None:
return nn.Identity()
assert act_type in ['GELU', 'ReLU', 'SiLU']
if act_type == 'SiLU':
return nn.SiLU()
elif act_type == 'ReLU':
return nn.ReLU()
else:
return nn.GELU()
class ElementScale(nn.Module):
#A learnable element-wise scaler.
def __init__(self, embed_dims, init_value=0., requires_grad=True):
super(ElementScale, self).__init__()
self.scale = nn.Parameter(
init_value * torch.ones((1, embed_dims, 1, 1)),
requires_grad=requires_grad
)
def forward(self, x):
return x * self.scale
class ChannelAggregationFFN(nn.Module):
"""An implementation of FFN with Channel Aggregation.
Args:
embed_dims (int): The feature dimension. Same as
`MultiheadAttention`.
feedforward_channels (int): The hidden dimension of FFNs.
kernel_size (int): The depth-wise conv kernel size as the
depth-wise convolution. Defaults to 3.
act_type (str): The type of activation. Defaults to 'GELU'.
ffn_drop (float, optional): Probability of an element to be
zeroed in FFN. Default 0.0.
"""
def __init__(self,
embed_dims,
kernel_size=3,
act_type='GELU',
ffn_drop=0.):
super(ChannelAggregationFFN, self).__init__()
self.embed_dims = embed_dims
self.feedforward_channels = int(embed_dims * 4)
self.fc1 = nn.Conv2d(
in_channels=embed_dims,
out_channels=self.feedforward_channels,
kernel_size=1)
self.dwconv = nn.Conv2d(
in_channels=self.feedforward_channels,
out_channels=self.feedforward_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
bias=True,
groups=self.feedforward_channels)
self.act = build_act_layer(act_type)
self.fc2 = nn.Conv2d(
in_channels=self.feedforward_channels,
out_channels=embed_dims,
kernel_size=1)
self.drop = nn.Dropout(ffn_drop)
self.decompose = nn.Conv2d(
in_channels=self.feedforward_channels, # C -> 1
out_channels=1, kernel_size=1,
)
self.sigma = ElementScale(
self.feedforward_channels, init_value=1e-5, requires_grad=True)
self.decompose_act = build_act_layer(act_type)
def feat_decompose(self, x):
# x_d: [B, C, H, W] -> [B, 1, H, W]
x = x + self.sigma(x - self.decompose_act(self.decompose(x)))
return x
def forward(self, x):
# proj 1
x = self.fc1(x)
x = self.dwconv(x)
x = self.act(x)
x = self.drop(x)
# proj 2
x = self.feat_decompose(x)
x = self.fc2(x)
x = self.drop(x)
return x
2.2 更改yaml文件 (以自研模型加入为例)
打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 512]
# n: [ 0.33, 0.25, 1024 ]
# s: [ 0.33, 0.50, 1024 ]
# m: [ 0.67, 0.75, 768 ]
# l: [ 1.00, 1.00, 512 ]
# x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, CCRI, [128, 5, True, False]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 4, CCRI, [256, 3, True, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 4, CCRI, [512, 3, True, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, CCRI, [1024, 3, True, False]]
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
- [-1, 1, ChannelAggregationFFN, []]
- [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 16], 1, Concat, [1]] # cat Y4
- [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
- [[-1, 11], 1, Concat, [1]] # cat Y5
- [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1
- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy, 技术指导QQ:2668825911⭐⭐
2.2 修改train.py文件
创建Train_RT脚本用于训练。
from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
if __name__ == '__main__':
model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
# model.load('yolov8n.pt')
model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
amp=True, mosaic=False, project='runs/train', name='exp')
在train.py脚本中填入修改好的yaml路径,运行即可训。
RT-DETR融合MogaNet的ChannelAggregationFFN模块
8213

被折叠的 条评论
为什么被折叠?



