CDH5.8.4-Hadoop2.6.0安装

本文详细介绍Hadoop集群的搭建过程,包括环境配置、安装、初始化及启动步骤,同时提供了测试HDFS命令和MapReduce作业运行的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.安装包下载

下载对应的版本即可

http://archive.cloudera.com/cdh5/cdh/5/

2.基础环境配置

2.1闭防火墙

[root@host151 bigdata]# systemctl stop firewalld 
[root@host151 bigdata]# systemctl disable firewalld

2.2关闭SELinux

[root@host151 bigdata]# setenforce 0
[root@host151 bigdata]# sed -i 's/enforcing/disabled/' /etc/sysconfig/selinux

2.3配置ssh免密设置

生成密钥,用hadoop用户安装,用root用户提交不yarn任务

[hadoop@host151 bigdata]# ssh-keygen -t rsa

分发密钥

[hadoop@host151 bigdata]# ssh-copy-id root@host151

注意:集群所有机器的ssh,包括本机的ssh也要配置免密

2.4配置jdk环境变量

[hadoop@host151 bigdata]# vim /home/hadoop/.bash_profile

添加如下:

export JAVA_HOME=/opt/jdk1.8.0_131
export PATH=$PATH:$JAVA_HOME/bin

生效文件:

[hadoop@host151 bigdata]# source /home/hadoop/.bash_profile

注意:可以scp分发到各个机器,不要忘source生效配置jdk配置文件

2.安装hadoop

2.1解压hadoop,并重命名为hadoop

[hadoop@host151 bigdata]# tar -zxvf hadoop-2.6.0-cdh5.8.4.tar.gz

[hadoop@host151 bigdata]# mv hadoop-2.6.0-cdh5.8.4 hadoop

2.2修改配置文件

[hadoop@host151 hadoop]# cd hadoop/etc/hadoop

修改hadoop-env.sh
[hadoop@host151 hadoop]# vim  hadoop-env.sh
修改jdk路径:
export JAVA_HOME=/opt/jdk1.8.0_131

修改yarn-env.sh
[hadoop@host151 hadoop]# vim  yarn-env.sh
修改jdk路径:
export JAVA_HOME=/opt/jdk1.8.0_131

修改mapred-env.sh
[hadoop@host151 hadoop]# vim  mapred-env.sh
修改jdk路径:
export JAVA_HOME=/opt/jdk1.8.0_131

修改core-site.xml,在<configuration>中添加如下配置:

    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://host151</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/home/hadoop/bigdata/datas/hadoop/tmp</value>
    </property>
    <property>
        <name>io.file.buffer.size</name>
        <value>131702</value>
    </property>

修改hdfs-site.xml,在<configuration>中添加如下配置,并创建对应的数据文件目录即可

    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/home/hadoop/bigdata/datas/hadoop/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/home/hadoop/bigdata/datas/hadoop/dfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>host151:50090</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.balance.bandwidthPerSec</name>
        <value>10485760</value>
    </property>

修改mapred-site.xml,将mapred-site.xml.template复制一份为mapred-site.xml,编辑添加:

    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

修改yarn-site.xml,<configuration>添加配置:

    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>host151</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>host151:8032</value>
    </property>
    <property>
       <name>yarn.resourcemanager.scheduler.address</name>
       <value>host151:8030</value>
    </property>
    <property>
       <name>yarn.resourcemanager.resource-tracker.address</name>
       <value>host151:8031</value>
    </property>

修改slaves文件,添加从节点,结果如下:
[root@host150 hadoop]# cat slaves
host151
host152

编辑并添加hadoop到环境变量中
[hadoop@host151 hadoop]$ vim /home/hadoop/.bash_profile
export HADOOP_HOME=/home/hadoop/bigdata/hadoop
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib:$HADOOP_COMMON_LIB_NATIVE_DIR"
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

生效文件

[hadoop@host151 hadoop]$ source /home/hadoop/.bash_profile

分发到各个节点
[hadoop@host151 bigdata]# scp -r hadoop hadoop@host152:/home/hadoop/bigdata
[hadoop@host151 bigdata]# scp -r hadoop hadoop@host153:/home/hadoop/bigdata

3.初始化和启动

​​​​3.1初始化hdfs

[hadoop@host151 bigdata]# hdfs namenode -format

3.2启动hdfs和yarn

[hadoop@host151 sbin]# start-dfs.sh
[hadoop@host151 sbin]# start-yarn.sh

查看进程:
[hadoop@host151 sbin]# jps
6178 NameNode
8844 ResourceManager
12477 Jps
6367 SecondaryNameNode

也可以一次性启动hdfs和yarn

[hadoop@host151 sbin]# start-all.sh

MapReducer PI运算
[hadoop@host151 mapreduce]# hadoop jar /home/hadoop/bigdata/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.8.4.jar  pi 5 10

结果:Estimated value of Pi is 3.28000000000000000000

hadoop和yarn的访问地址

hadoop集群:http://192.168.206.150:50070/
hadoop调度:http://192.168.206.150:8088/

4.测试

4.1常用hdfs命令

创建目录

[hadoop@host151 sbin]# hadoop fs -mkdir /input
[hadoop@host151 sbin]# hadoop fs -mkdir /output

列出文件

[hadoop@host151 sbin]# hadoop fs -ls /
Found 2 items
drwxr-xr-x   - root supergroup          0 2020-01-24 16:02 /input
drwxr-xr-x   - root supergroup          0 2020-01-24 16:02 /output

上传文件

[hadoop@host151 bigdata]# hadoop fs -put hello.txt /input

查看文件内容

[hadoop@host151 bigdata]# hadoop fs -cat /input/hello.txt
hello
hello
my name is job
windows
spark

4.2对hello.txt文件进行wordcount测试

执行wordcount

[hadoop@host151 mapreduce]# hadoop jar /home/hadoop/bigdata/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.8.4.jar wordcount /input/hello.txt /output/wordcounttest

对wordcount结果查看排序输出
[hadoop@host151 mapreduce]# hadoop fs -ls /output/wordcounttest
Found 2 items
-rw-r--r--   2 root supergroup          0 2020-01-24 16:13 /output/wordcounttest/_SUCCESS
-rw-r--r--   2 root supergroup         49 2020-01-24 16:13 /output/wordcounttest/part-r-00000
[root@host150 mapreduce]# hadoop fs -cat /output/wordcounttest/part-r-00000|sort -k2 -nr|head
hello   1
windows 1
spark   1
name    1
my      1
job     1
is      1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值