CVPR2019 | 15篇论文速递(涵盖目标检测、语义分割和姿态估计等方向)

导读】CVPR 2019 接收论文列表已经出来了,但只是一些索引号,所以并没有完整的论文合集。CVer 最近也在整理收集,今天一文涵盖15篇 CVPR 2019 论文速递,内容涵盖目标检测、语义分割和姿态估计等方向。

 

特别鸣谢 CV_arXiv_Daily 公众号提供的素材,本文介绍的论文已经同步至:

https://github.com/zhengzhugithub/CV-arXiv-Daily

 

姿态估计

 

[1] CVPR 2019 Pose estimation文章,目前SOTA,已经开源

论文题目:Deep High-Resolution Representation Learning for Human Pose Estimation

作者:Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang

论文链接:https://arxiv.org/abs/1902.09212

代码链接:https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

摘要: This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.

 

来自微软和中国科技大学研究学者的论文《Deep High-Resolution Representation Learning for Human Pose Estimation》和相应代码甫一公布,立刻引起大家的关注,不到一天之内,github上已有将近50颗星。

今天就跟大家一起来品读此文妙处。

该文作者信息:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值