冠层四流近似模型的发展历史

1. Kunbelka-Munk theory

This is the earlist model using a two-stream approximation
d I d z = − ( k + s ) I + s J d J d z = ( k + s ) J − s I \begin{aligned} &\frac{dI}{dz} = -(k+s)I+sJ\\ &\frac{dJ}{dz} = (k+s)J - sI \end{aligned} dzdI=(k+s)I+sJdzdJ=(k+s)JsI
Here, I I I and J J J is downward and upward flux density, and k k k is obsorption coefficient, s s s is back scattering coefficient, z z z is the metrical depth.
在这里插入图片描述

Another notation represent the K-M theory by
d E − d z = − a E − + σ E + − d E + d z = − a E + + σ E − \begin{aligned} &\frac{dE^-}{dz} = -aE^-+\sigma E^+\\ &-\frac{dE^+}{dz} = -aE^+ + \sigma E^- \end{aligned} dzdE=aE+σE+dzdE+=aE++σE
Here, a = k + s a=k+s a=k+s is called attenuation coefficient, and σ \sigma σ is backscattering coefficient.

2. Duntley equations

For considering the specular source like sun, we have Duntley equations.
d E s d z = − k E s d E − d z = s ′ E s − a E − + σ E + d E + d z = − s ′ E s + a E + − σ E − \begin{aligned} &\frac{dE_s}{dz} = -kE_s\\ &\frac{dE^-}{dz} = s'E_s -aE^-+\sigma E^+\\ &\frac{dE^+}{dz} = -s'E_s +aE^+ - \sigma E^- \end{aligned} dzdEs=kEsdzdE=sEsaE+σE+dzdE+=sEs+aE+σE
Here, k k k is extinction coefficient for specular flux density, and s ′ s' s is forward scatter coefficient for specular flux density, and s s s​ is backward scatter coefficient for specualar flux density.

To now, these equations are not connected with canopy parameters, such as leaf area index.

3. Suit and SAIL model

Suit model is also Duntley equations, but the coefficients are directly expressed in biophysical parameters of the canopy. The coefficients of suit model only defined for horizontal and vertical leaves, SAIL model improved the Suit and its coefficients can be computed for any leaf inclination.

These two models are actually four-stream model, which is
E s / d z = − k E s , E − / d z = s ′ E s − a E − + σ E + , E + / d z = − s E s − σ E − + a E + , π I o + / d z = − w E s − v E − − v ′ E + + K π I o + , π I o − / d z = w ′ E s + v ′ E − + v E + − K π I o − . \begin{aligned} & E_s/dz = -kE_s,\\ & E^-/dz=s'E_s-aE^-+\sigma E^+,\\ & E^+/dz=-sE_s-\sigma E^-+aE^+,\\ & \pi I_o^+/dz=-wE_s-vE^--v'E^++K \pi I_o^+,\\ & \pi I_o^-/dz=w'E_s+v'E^-+vE^+-K \pi I_o^-.\\ \end{aligned} Es/dz=kEs,E/dz=sEsaE+σE+,E+/dz=sEsσE+aE+,πIo+/dz=wEsvEvE++KπIo+,πIo/dz=wEs+vE+vE+KπIo.
The parameter are easy to understand and are same to the previous blog.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值