Verhoef对辐射传输模型的四流近似方法

Verhoef Four-stream theory

1. reflectance

The BRDF ρ ′ \rho' ρ is defined as
d L ( Ω ) = ρ ′ ( Ω , Ω ′ ) I ( Ω ′ ) ∣ μ ′ ∣ d Ω dL(\Omega)=\rho'(\Omega,\Omega')I(\Omega')|\mu'|d\Omega dL(Ω)=ρ(Ω,Ω)I(Ω)μdΩ
For specular incident flux from direction Ω ′ \Omega' Ω it becomes
I ( Ω ) = ρ ′ ( Ω ′ , Ω ) E ( Ω ′ ) I(\Omega)=\rho'(\Omega',\Omega)E(\Omega') I(Ω)=ρ(Ω,Ω)E(Ω)
For Lambertian target, we have
M = π I M=\pi I M=πI
Here, M M M is exitance. For ideal Lambertian (called White Lambertian reflector in verhoef’s book), M = E = F M=E=F M=E=F, thus the BRDF of this target is
F π = ρ ′ F → ρ ′ = 1 π \frac{F}{\pi}=\rho'F \rightarrow\rho'=\frac{1}{\pi} πF=ρFρ=π1
The radiance of arbitraty BRDF is
I ( Ω ) = ∫ 2 π − ρ ′ ( Ω ′ , Ω ) ∣ μ ′ ∣ I ( Ω ′ ) d Ω ′ I(\Omega)=\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega' I(Ω)=2πρ(Ω,Ω)μI(Ω)dΩ
The BRF r 0 r_0 r0 is defined as
r 0 = ∫ 2 π − ρ ′ ( Ω ′ , Ω ) ∣ μ ′ ∣ I ( Ω ′ ) d Ω ′ 1 π ∫ 2 π − ∣ μ ′ ∣ I ( Ω ′ ) d Ω ′ r_0=\frac{\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|I(\Omega')d\Omega'} r0=π12πμI(Ω)dΩ2πρ(Ω,Ω)μI(Ω)dΩ
So for spexular incident flux, using delta function, it could be writen as
r s o = ρ ′ ( Ω ′ , Ω ) ∣ μ ′ ∣ I ( Ω ′ ) ∣ μ ′ ∣ I ( Ω ′ ) 1 π = π I 0 F s ↓ = π ρ ′ r_{so}=\frac{\rho'(\Omega',\Omega)|\mu'|I(\Omega')}{|\mu'|I(\Omega')\frac{1}{\pi}}=\frac{\pi I_0}{F^{\downarrow}_s}=\pi\rho' rso=μI(Ω)π1ρ(Ω,Ω)μI(Ω)=FsπI0=πρ
where F s ↓ = ∣ μ ′ ∣ I ( Ω ′ ) 1 π F_s^{\downarrow}=|\mu'|I(\Omega')\frac{1}{\pi} Fs=μI(Ω)π1. And for a isopropic diffuse incident flux, we have
r d o = ∫ 2 π − ∣ μ ′ ∣ ρ ′ ( Ω ′ , Ω ) d Ω ′ 1 π ∫ 2 π − ∣ μ ′ ∣ d Ω ′ = ∫ 2 π − ∣ μ ′ ∣ ρ ′ ( Ω ′ , Ω ) d Ω ′ = π I 0 F d ↓ r_{do}=\frac{\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|d\Omega'}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{\pi I_0}{F^{\downarrow}_d} rdo=π12πμdΩ2πμρ(Ω,Ω)dΩ=2πμρ(Ω,Ω)dΩ=FdπI0
So using Eq. (7) we have the relationship of r s o r_{so} rso and r d o r_{do} rdo
r d o = ∫ 2 π − ∣ μ ′ ∣ ρ ′ ( Ω ′ , Ω ) d Ω ′ = 1 π ∫ 2 π − ∣ μ ′ ∣ r s o d Ω ′ r_{do}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{1}{\pi}\int_{2\pi-}|\mu'|r_{so}d\Omega' rdo=2πμρ(Ω,Ω)dΩ=π12πμrsodΩ
BHR (called diffuse reflectance in verhoef’s book) is defined as
r d = ∫ 2 π + I ∣ μ ∣ d Ω F ↓ r_d = \frac{\int_{2\pi+}I|\mu|d\Omega}{F^{\downarrow}} rd=F2π+IμdΩ
For specular incident flux r d r_d rd becomes r s d r_{sd} rsd, which is
r s d = ∫ 2 π + I ( Ω ′ ) ∣ μ ′ ∣ ρ ′ ( Ω ′ , Ω ) ∣ μ ∣ d Ω I ( Ω ′ ) ∣ μ ′ ∣ = ∫ 2 π + ρ ′ ( Ω ′ , Ω ) ∣ μ ∣ d Ω r_{sd}=\frac{\int_{2\pi+}I(\Omega')|\mu'|\rho'(\Omega',\Omega)|\mu|d\Omega}{I(\Omega')|\mu'|}=\int_{2\pi+}\rho'(\Omega',\Omega)|\mu|d\Omega rsd=I(Ω)μ2π+I(Ω)μρ(Ω,Ω)μdΩ=2π+ρ(Ω,Ω)μdΩ
And we connect the Eq. (11) with Eq. (7), we found that
r s d = 1 π ∫ 2 π + r s o ∣ μ ∣ d Ω r_{sd}=\frac{1}{\pi}\int_{2\pi+}r_{so}|\mu|d\Omega rsd=π12π+rsoμdΩ
For isopropic diffuse incident flux, we could find that BHR is
r d d = ∫ 2 π + I ( Ω ) ∣ μ ∣ d Ω I = 1 π ∫ 2 π + ∫ 2 π − I ( Ω ′ ) ρ ( Ω ′ , Ω ) ∣ μ ′ ∣ d Ω ′ ∣ μ ∣ d Ω I = 1 π ∫ 2 π + ∫ 2 π − ρ ( Ω ′ , Ω ) ∣ μ ′ ∣ d Ω ′ ∣ μ ∣ d Ω \begin{aligned} r_{dd}&=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I}\\&=\frac{\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}I(\Omega')\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega}{I}\\ &=\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega \end{aligned} rdd=I2π+I(Ω)μdΩ=Iπ12π+2πI(Ω)ρ(Ω,Ω)μdΩμdΩ=π12π+2πρ(Ω,Ω)μdΩμdΩ
If the incident flux is composed of a specular part F s F_s Fs and a diffuse part F d F_{d} Fd, then the radiance I I I of the surface with direction Ω \Omega Ω is
π I ( Ω ) = r s o F s + r d o F d \pi I(\Omega)=r_{so}F_s+r_{do}F_d πI(Ω)=rsoFs+rdoFd

and we also have the approximation that
F ↑ = r s d F s + r d d F ↓ F^{\uparrow}=r_{sd}F_s+r_{dd}F^{\downarrow} F=rsdFs+rddF
The Eq. (14) and Eq.(15) constitute the four-stream representation of reflectance of a surface.

Transmittance

Define the bidirectional transmittance distribution function (BTDF) as
d I ( Ω ) = τ ′ ( Ω ′ , Ω ) I ( Ω ′ ) ∣ μ ′ ∣ d Ω dI(\Omega)=\tau'(\Omega',\Omega)I(\Omega')|\mu'|d\Omega dI(Ω)=τ(Ω,Ω)I(Ω)μdΩ
So τ ′ \tau' τ is very similar to BRDF, only different is Ω ′ \Omega' Ω and Ω \Omega Ω are in opposite hemishpheres. With similar defination of reflectance characters, we have
τ s o ( Ω ′ , Ω ) = π τ ′ ( Ω ′ , Ω ) τ d o ( Ω ) = ∫ 2 π + τ ′ ( Ω ′ , Ω ) ∣ μ ′ ∣ d Ω ′ τ s d = ∫ 2 π − τ ′ ( Ω ′ , Ω ) ∣ μ ∣ d Ω τ d d = 1 π ∫ 2 π − τ d o ∣ μ ∣ d Ω \begin{aligned} &\tau_{so}(\Omega',\Omega)=\pi\tau'(\Omega',\Omega)\\ &\tau_{do}(\Omega)=\int_{2\pi+}\tau'(\Omega',\Omega)|\mu'|d\Omega'\\ &\tau_{sd}=\int_{2\pi-}\tau'(\Omega',\Omega)|\mu|d\Omega\\ &\tau_{dd}=\frac{1}{\pi}\int_{2\pi-}\tau_{do}|\mu|d\Omega \end{aligned} τso(Ω,Ω)=πτ(Ω,Ω)τdo(Ω)=2π+τ(Ω,Ω)μdΩτsd=2πτ(Ω,Ω)μdΩτdd=π12πτdoμdΩ
They are direct-in-out, diffuse-in-direct-out, direct-in-diffuse-out, and diffuse-in-out transmittance. And if Ω ′ = Ω \Omega'=\Omega Ω=Ω, then the transmittance is called direct transmittance, for specular flux this is called τ s s \tau_{ss} τss and for obervation direction this is called τ o o \tau_{oo} τoo.

Four-Stream interaction with layers and surfaces

Now, we use E E E for flux density (or irradiance). The four-stream radiative transfer equations for a layer is
E s ( b ) = τ s s E s ( t ) , E − ( b ) = τ s d E s ( t ) + τ d d E − ( t ) + ρ d d E + ( b ) , E + ( b ) = ρ s d E s ( t ) + ρ d d E − ( t ) + τ d d E + ( b ) , π I o + ( t ) = ρ s o E s ( t ) + ρ d o E − t ) + τ d o E + ( b ) + τ o o π I o + ( b ) , π I o − ( t ) = τ s o E s ( t ) + τ d o E − t ) + ρ d o E + ( b ) + τ o o π I o − ( b ) . \begin{aligned} & E_s(b)=\tau_{ss}E_s(t),\\ & E^-(b)=\tau_{sd}E_s(t)+\tau_{dd}E^-(t)+\rho_{dd}E^+(b),\\ & E^+(b)=\rho_{sd}E_s(t)+\rho_{dd}E^-(t)+\tau_{dd}E^+(b),\\ & \pi I_o^+(t)=\rho_{so}E_s(t)+\rho_{do}E^-t)+\tau_{do}E^+(b)+\tau_{oo}\pi I_o^+(b),\\ & \pi I_o^-(t)=\tau_{so}E_s(t)+\tau_{do}E^-t)+\rho_{do}E^+(b)+\tau_{oo}\pi I_o^-(b).\\ \end{aligned} Es(b)=τssEs(t),E(b)=τsdEs(t)+τddE(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoEt)+τdoE+(b)+τooπIo+(b),πIo(t)=τsoEs(t)+τdoEt)+ρdoE+(b)+τooπIo(b).
So it is easy to understand these equations, the only hard place is the last two equations, the factor π \pi π looks strange. For this, we could divide the π \pi π from both sides, then we find that the BRDFs or BRTF all become the BRF (BTF), so it looks better.

Then, the interaction with a surface is
E + ( b ) = r s d E s ( b ) + r d d E − ( b ) π I 0 + = r s o E s ( b ) + r d o E − ( b ) \begin{aligned} &E^+(b) = r_{sd}E_s(b)+r_{dd}E^-(b)\\ & \pi I_0^+ = r_{so}E_s(b)+r_{do}E^-(b) \end{aligned} E+(b)=rsdEs(b)+rddE(b)πI0+=rsoEs(b)+rdoE(b)
Then Eq. (20) and (21) discribe a surface and a layer beyund it. This process is discribed as the following figure:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值