Verhoef Four-stream theory
1. reflectance
The BRDF
ρ
′
\rho'
ρ′ is defined as
d
L
(
Ω
)
=
ρ
′
(
Ω
,
Ω
′
)
I
(
Ω
′
)
∣
μ
′
∣
d
Ω
dL(\Omega)=\rho'(\Omega,\Omega')I(\Omega')|\mu'|d\Omega
dL(Ω)=ρ′(Ω,Ω′)I(Ω′)∣μ′∣dΩ
For specular incident flux from direction
Ω
′
\Omega'
Ω′ it becomes
I
(
Ω
)
=
ρ
′
(
Ω
′
,
Ω
)
E
(
Ω
′
)
I(\Omega)=\rho'(\Omega',\Omega)E(\Omega')
I(Ω)=ρ′(Ω′,Ω)E(Ω′)
For Lambertian target, we have
M
=
π
I
M=\pi I
M=πI
Here,
M
M
M is exitance. For ideal Lambertian (called White Lambertian reflector in verhoef’s book),
M
=
E
=
F
M=E=F
M=E=F, thus the BRDF of this target is
F
π
=
ρ
′
F
→
ρ
′
=
1
π
\frac{F}{\pi}=\rho'F \rightarrow\rho'=\frac{1}{\pi}
πF=ρ′F→ρ′=π1
The radiance of arbitraty BRDF is
I
(
Ω
)
=
∫
2
π
−
ρ
′
(
Ω
′
,
Ω
)
∣
μ
′
∣
I
(
Ω
′
)
d
Ω
′
I(\Omega)=\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'
I(Ω)=∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′
The BRF
r
0
r_0
r0 is defined as
r
0
=
∫
2
π
−
ρ
′
(
Ω
′
,
Ω
)
∣
μ
′
∣
I
(
Ω
′
)
d
Ω
′
1
π
∫
2
π
−
∣
μ
′
∣
I
(
Ω
′
)
d
Ω
′
r_0=\frac{\int_{2\pi-}\rho'(\Omega',\Omega)|\mu'|I(\Omega')d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|I(\Omega')d\Omega'}
r0=π1∫2π−∣μ′∣I(Ω′)dΩ′∫2π−ρ′(Ω′,Ω)∣μ′∣I(Ω′)dΩ′
So for spexular incident flux, using delta function, it could be writen as
r
s
o
=
ρ
′
(
Ω
′
,
Ω
)
∣
μ
′
∣
I
(
Ω
′
)
∣
μ
′
∣
I
(
Ω
′
)
1
π
=
π
I
0
F
s
↓
=
π
ρ
′
r_{so}=\frac{\rho'(\Omega',\Omega)|\mu'|I(\Omega')}{|\mu'|I(\Omega')\frac{1}{\pi}}=\frac{\pi I_0}{F^{\downarrow}_s}=\pi\rho'
rso=∣μ′∣I(Ω′)π1ρ′(Ω′,Ω)∣μ′∣I(Ω′)=Fs↓πI0=πρ′
where
F
s
↓
=
∣
μ
′
∣
I
(
Ω
′
)
1
π
F_s^{\downarrow}=|\mu'|I(\Omega')\frac{1}{\pi}
Fs↓=∣μ′∣I(Ω′)π1. And for a isopropic diffuse incident flux, we have
r
d
o
=
∫
2
π
−
∣
μ
′
∣
ρ
′
(
Ω
′
,
Ω
)
d
Ω
′
1
π
∫
2
π
−
∣
μ
′
∣
d
Ω
′
=
∫
2
π
−
∣
μ
′
∣
ρ
′
(
Ω
′
,
Ω
)
d
Ω
′
=
π
I
0
F
d
↓
r_{do}=\frac{\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'}{\frac{1}{\pi}\int_{2\pi-}|\mu'|d\Omega'}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{\pi I_0}{F^{\downarrow}_d}
rdo=π1∫2π−∣μ′∣dΩ′∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=Fd↓πI0
So using Eq. (7) we have the relationship of
r
s
o
r_{so}
rso and
r
d
o
r_{do}
rdo
r
d
o
=
∫
2
π
−
∣
μ
′
∣
ρ
′
(
Ω
′
,
Ω
)
d
Ω
′
=
1
π
∫
2
π
−
∣
μ
′
∣
r
s
o
d
Ω
′
r_{do}=\int_{2\pi-}|\mu'|\rho'(\Omega',\Omega)d\Omega'=\frac{1}{\pi}\int_{2\pi-}|\mu'|r_{so}d\Omega'
rdo=∫2π−∣μ′∣ρ′(Ω′,Ω)dΩ′=π1∫2π−∣μ′∣rsodΩ′
BHR (called diffuse reflectance in verhoef’s book) is defined as
r
d
=
∫
2
π
+
I
∣
μ
∣
d
Ω
F
↓
r_d = \frac{\int_{2\pi+}I|\mu|d\Omega}{F^{\downarrow}}
rd=F↓∫2π+I∣μ∣dΩ
For specular incident flux
r
d
r_d
rd becomes
r
s
d
r_{sd}
rsd, which is
r
s
d
=
∫
2
π
+
I
(
Ω
′
)
∣
μ
′
∣
ρ
′
(
Ω
′
,
Ω
)
∣
μ
∣
d
Ω
I
(
Ω
′
)
∣
μ
′
∣
=
∫
2
π
+
ρ
′
(
Ω
′
,
Ω
)
∣
μ
∣
d
Ω
r_{sd}=\frac{\int_{2\pi+}I(\Omega')|\mu'|\rho'(\Omega',\Omega)|\mu|d\Omega}{I(\Omega')|\mu'|}=\int_{2\pi+}\rho'(\Omega',\Omega)|\mu|d\Omega
rsd=I(Ω′)∣μ′∣∫2π+I(Ω′)∣μ′∣ρ′(Ω′,Ω)∣μ∣dΩ=∫2π+ρ′(Ω′,Ω)∣μ∣dΩ
And we connect the Eq. (11) with Eq. (7), we found that
r
s
d
=
1
π
∫
2
π
+
r
s
o
∣
μ
∣
d
Ω
r_{sd}=\frac{1}{\pi}\int_{2\pi+}r_{so}|\mu|d\Omega
rsd=π1∫2π+rso∣μ∣dΩ
For isopropic diffuse incident flux, we could find that BHR is
r
d
d
=
∫
2
π
+
I
(
Ω
)
∣
μ
∣
d
Ω
I
=
1
π
∫
2
π
+
∫
2
π
−
I
(
Ω
′
)
ρ
(
Ω
′
,
Ω
)
∣
μ
′
∣
d
Ω
′
∣
μ
∣
d
Ω
I
=
1
π
∫
2
π
+
∫
2
π
−
ρ
(
Ω
′
,
Ω
)
∣
μ
′
∣
d
Ω
′
∣
μ
∣
d
Ω
\begin{aligned} r_{dd}&=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I}\\&=\frac{\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}I(\Omega')\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega}{I}\\ &=\frac{1}{\pi}\int_{2\pi+}\int_{2\pi-}\rho(\Omega',\Omega)|\mu'|d\Omega'|\mu|d\Omega \end{aligned}
rdd=I∫2π+I(Ω)∣μ∣dΩ=Iπ1∫2π+∫2π−I(Ω′)ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ=π1∫2π+∫2π−ρ(Ω′,Ω)∣μ′∣dΩ′∣μ∣dΩ
If the incident flux is composed of a specular part
F
s
F_s
Fs and a diffuse part
F
d
F_{d}
Fd, then the radiance
I
I
I of the surface with direction
Ω
\Omega
Ω is
π
I
(
Ω
)
=
r
s
o
F
s
+
r
d
o
F
d
\pi I(\Omega)=r_{so}F_s+r_{do}F_d
πI(Ω)=rsoFs+rdoFd
and we also have the approximation that
F
↑
=
r
s
d
F
s
+
r
d
d
F
↓
F^{\uparrow}=r_{sd}F_s+r_{dd}F^{\downarrow}
F↑=rsdFs+rddF↓
The Eq. (14) and Eq.(15) constitute the four-stream representation of reflectance of a surface.
Transmittance
Define the bidirectional transmittance distribution function (BTDF) as
d
I
(
Ω
)
=
τ
′
(
Ω
′
,
Ω
)
I
(
Ω
′
)
∣
μ
′
∣
d
Ω
dI(\Omega)=\tau'(\Omega',\Omega)I(\Omega')|\mu'|d\Omega
dI(Ω)=τ′(Ω′,Ω)I(Ω′)∣μ′∣dΩ
So
τ
′
\tau'
τ′ is very similar to BRDF, only different is
Ω
′
\Omega'
Ω′ and
Ω
\Omega
Ω are in opposite hemishpheres. With similar defination of reflectance characters, we have
τ
s
o
(
Ω
′
,
Ω
)
=
π
τ
′
(
Ω
′
,
Ω
)
τ
d
o
(
Ω
)
=
∫
2
π
+
τ
′
(
Ω
′
,
Ω
)
∣
μ
′
∣
d
Ω
′
τ
s
d
=
∫
2
π
−
τ
′
(
Ω
′
,
Ω
)
∣
μ
∣
d
Ω
τ
d
d
=
1
π
∫
2
π
−
τ
d
o
∣
μ
∣
d
Ω
\begin{aligned} &\tau_{so}(\Omega',\Omega)=\pi\tau'(\Omega',\Omega)\\ &\tau_{do}(\Omega)=\int_{2\pi+}\tau'(\Omega',\Omega)|\mu'|d\Omega'\\ &\tau_{sd}=\int_{2\pi-}\tau'(\Omega',\Omega)|\mu|d\Omega\\ &\tau_{dd}=\frac{1}{\pi}\int_{2\pi-}\tau_{do}|\mu|d\Omega \end{aligned}
τso(Ω′,Ω)=πτ′(Ω′,Ω)τdo(Ω)=∫2π+τ′(Ω′,Ω)∣μ′∣dΩ′τsd=∫2π−τ′(Ω′,Ω)∣μ∣dΩτdd=π1∫2π−τdo∣μ∣dΩ
They are direct-in-out, diffuse-in-direct-out, direct-in-diffuse-out, and diffuse-in-out transmittance. And if
Ω
′
=
Ω
\Omega'=\Omega
Ω′=Ω, then the transmittance is called direct transmittance, for specular flux this is called
τ
s
s
\tau_{ss}
τss and for obervation direction this is called
τ
o
o
\tau_{oo}
τoo.
Four-Stream interaction with layers and surfaces
Now, we use
E
E
E for flux density (or irradiance). The four-stream radiative transfer equations for a layer is
E
s
(
b
)
=
τ
s
s
E
s
(
t
)
,
E
−
(
b
)
=
τ
s
d
E
s
(
t
)
+
τ
d
d
E
−
(
t
)
+
ρ
d
d
E
+
(
b
)
,
E
+
(
b
)
=
ρ
s
d
E
s
(
t
)
+
ρ
d
d
E
−
(
t
)
+
τ
d
d
E
+
(
b
)
,
π
I
o
+
(
t
)
=
ρ
s
o
E
s
(
t
)
+
ρ
d
o
E
−
t
)
+
τ
d
o
E
+
(
b
)
+
τ
o
o
π
I
o
+
(
b
)
,
π
I
o
−
(
t
)
=
τ
s
o
E
s
(
t
)
+
τ
d
o
E
−
t
)
+
ρ
d
o
E
+
(
b
)
+
τ
o
o
π
I
o
−
(
b
)
.
\begin{aligned} & E_s(b)=\tau_{ss}E_s(t),\\ & E^-(b)=\tau_{sd}E_s(t)+\tau_{dd}E^-(t)+\rho_{dd}E^+(b),\\ & E^+(b)=\rho_{sd}E_s(t)+\rho_{dd}E^-(t)+\tau_{dd}E^+(b),\\ & \pi I_o^+(t)=\rho_{so}E_s(t)+\rho_{do}E^-t)+\tau_{do}E^+(b)+\tau_{oo}\pi I_o^+(b),\\ & \pi I_o^-(t)=\tau_{so}E_s(t)+\tau_{do}E^-t)+\rho_{do}E^+(b)+\tau_{oo}\pi I_o^-(b).\\ \end{aligned}
Es(b)=τssEs(t),E−(b)=τsdEs(t)+τddE−(t)+ρddE+(b),E+(b)=ρsdEs(t)+ρddE−(t)+τddE+(b),πIo+(t)=ρsoEs(t)+ρdoE−t)+τdoE+(b)+τooπIo+(b),πIo−(t)=τsoEs(t)+τdoE−t)+ρdoE+(b)+τooπIo−(b).
So it is easy to understand these equations, the only hard place is the last two equations, the factor
π
\pi
π looks strange. For this, we could divide the
π
\pi
π from both sides, then we find that the BRDFs or BRTF all become the BRF (BTF), so it looks better.
Then, the interaction with a surface is
E
+
(
b
)
=
r
s
d
E
s
(
b
)
+
r
d
d
E
−
(
b
)
π
I
0
+
=
r
s
o
E
s
(
b
)
+
r
d
o
E
−
(
b
)
\begin{aligned} &E^+(b) = r_{sd}E_s(b)+r_{dd}E^-(b)\\ & \pi I_0^+ = r_{so}E_s(b)+r_{do}E^-(b) \end{aligned}
E+(b)=rsdEs(b)+rddE−(b)πI0+=rsoEs(b)+rdoE−(b)
Then Eq. (20) and (21) discribe a surface and a layer beyund it. This process is discribed as the following figure: