Otsu(大津法或最大类间方差法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分。 所以可以在二值化的时候采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。
设t为设定的阈值。
图像总平均灰度为: u = w0∗u0 + w1∗u1
从L个灰度级遍历 t,使得 t 为某个值的时候,前景和背景的方差最大,则 这个 t 值便是我们要求得的阈值。其中,方差的计算公式如下:
g = wo∗(u0−u)∗(u0−u) + w1∗(u1−u)∗(u1−u)
此公式计算量较大,可以采用:
g = w0∗w1∗(u0−u1)∗(u0−u1)
由于Otsu算法是对图像的灰度级进行聚类,因此在执行Otsu算法之前,需要计算该图像的灰度直方图。
源码(matlab):
function [t,em] = otsuthresh(counts)
%OTSUTHRESH Global