1002. A+B for Polynomials (25)

本文介绍了使用链表和数组两种方法实现多项式加法的过程。通过对比不同方法的效率,展示了如何读取输入并输出结果。同时,文章还提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < … < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output

3 2 1.5 1 2.9 0 3.2

思路:一开始的思路是用链表解决。霹雳巴拉写了一百多行代码,递交,只通过两个测试点。。。仔细一看题目,最多就是1000项。。。可能。。。用数组实现更简单。。。如果在考场写链表的话,还是要一定的熟练度的。。。

#include<stdio.h>
#include<stdlib.h>

typedef struct Node *PtrToNode;
typedef PtrToNode Polynomial;
typedef PtrToNode Position;
struct Node {
    int Exp;
    float Coe;
    Position Next;
};


Polynomial Read_Polynomial ( void );
Position Creat_a_PolynomialNode ( void );
Position Find_the_PolynomialLast ( Polynomial P );
Position Attach_to_Polynomial( Polynomial P, Position TmpCell );
Position Find_the_last( Polynomial P );
void Print_Polynomial ( Polynomial P );
Position Add_Polynomial ( Polynomial P1, Polynomial P2 );
int Count_Item ( Polynomial P );

int main ( void )
{
    Polynomial P1 = NULL;
    P1 = Read_Polynomial ( );

    Polynomial P2 = NULL;
    P2 = Read_Polynomial( );


    Polynomial P3 = Add_Polynomial( P1, P2 );
    int count = Count_Item( P3 );
    printf("%d ", count );
    Print_Polynomial( P3 );

    return 0;
}


Polynomial Read_Polynomial ( )
{
    int N = 0;
    scanf("%d", &N );
    Polynomial P = NULL;

    while ( N-- ){
        int temp_exponent = 0;
        float temp_coefficient = 0;
        scanf("%d", &temp_exponent );
        scanf("%f", &temp_coefficient );
        Position TmpCell = Creat_a_PolynomialNode ( );
        TmpCell->Exp = temp_exponent;
        TmpCell->Coe = temp_coefficient;
        TmpCell->Next = NULL;
        P = Attach_to_Polynomial ( P, TmpCell );
    }
    return P;
}

Position Creat_a_PolynomialNode ( void )
{
    Position P = ( Position ) malloc ( sizeof ( struct Node ) );
    return P;
}
Position Attach_to_Polynomial( Polynomial P, Position TmpCell )
{
    Position last = P;
    if ( last ){
        last = Find_the_last( P );
        last->Next = TmpCell;
    }else {
        P = TmpCell;
    }

    return P;
}
Position Find_the_last( Polynomial P )
{
    Position last = P;
    while ( last->Next ){
        last = last->Next;
    }
    return last;
}
void Print_Polynomial ( Polynomial P )
{
    Position Temp_P = P;
    while ( Temp_P ){
        if ( Temp_P->Next ){
            printf("%d %.1f ",  Temp_P->Exp, Temp_P->Coe);
            Temp_P = Temp_P->Next;
        }else {
            printf("%d %.1f",  Temp_P->Exp, Temp_P->Coe);
            Temp_P = Temp_P->Next;
        }

    }
}


Position Add_Polynomial ( Polynomial P1, Polynomial P2 )
{
    Polynomial P = NULL;

    while( P1 && P2 ){
        if ( P1->Exp  >  P2->Exp ){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P1->Exp;
            temp->Coe = P1->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P1 = P1->Next;
        }else if ( P1->Exp  ==  P2->Exp ){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P1->Exp;
            temp->Coe = P1->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P1 = P1->Next;
            P2 = P2->Next;
        }else if ( P1->Exp < P2->Exp){
            Position temp = Creat_a_PolynomialNode();
            temp->Exp = P2->Exp;
            temp->Coe = P2->Coe;
            temp->Next = NULL;
            P = Attach_to_Polynomial(P, temp);
            P2 = P2->Next;
        }
    }
    if ( P1 ){
        Position last = Find_the_last( P );
        last->Next = P1;
    }
    if ( P2 ){
        Position last = Find_the_last( P );
        last->Next = P2;
    }
    return P;
}


int Count_Item ( Polynomial P )
{
    int count = 0;
    Position Temp_P = P;

    while ( Temp_P){
        count++;
        Temp_P = Temp_P->Next;
    }

    return count;
}

查看别人更加快捷的解法,果然用数组在时间上更加经济,空间上可能会浪费一些。

#include<stdio.h>
double coefficient[1001];
int main()
{
    int i,count=0,n,index;
    double temp;
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%d%lf",&index,&temp);
        coefficient[index]+=temp;
    }
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%d%lf",&index,&temp);
        coefficient[index]+=temp;
    }
    for(i=1000;i>=0;i--)
    {
        if(coefficient[i]!=0)
        {
            count++;
            index=i;
        }
    }
    if(count>0)
    {
        printf("%d ",count);
        for(i=1000;i>index;i--)
        {
            if(coefficient[i]!=0)
                printf("%d %.1lf ",i,coefficient[i]);
        }
        printf("%d %.1lf",i,coefficient[i]);
    }
    else
        printf("%d",count);

}
1002 A+B for Polynomials 是一道编程题目,通常是在考察Java中处理多项式加法的问题。在这个问题中,你需要编写一个程序,让用户输入两个多项式的系数(如a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0的形式),然后计算它们的和,并按照同样的形式表示出来。 在Java中,你可以创建一个`Polynomial`类,包含一个数组来存储系数和最高次数的信息。用户输入的每个多项式可以被解析成这样的结构,然后通过遍历并累加系数来完成加法操作。最后,将结果转换回字符串形式展示给用户。 以下是简化版的代码示例: ```java class Polynomial { int[] coefficients; int degree; // 构造函数,初始化数组 public Polynomial(int[] coeffs) { coefficients = coeffs; degree = coefficients.length - 1; } // 加法方法 Polynomial add(Polynomial other) { Polynomial result = new Polynomial(new int[coefficients.length + other.coefficients.length]); for (int i = 0; i < coefficients.length; ++i) { result.coefficients[i] += coefficients[i]; } for (int i = 0; i < other.coefficients.length; ++i) { result.coefficients[i + coefficients.length] += other.coefficients[i]; } result.degree = Math.max(degree, other.degree); return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(); if (degree >= 0) { for (int i = degree; i >= 0; --i) { sb.append(coefficients[i]).append('*x^').append(i).append(" + "); } // 移除最后一个 " + " sb.setLength(sb.length() - 2); } else { sb.append("0"); } return sb.toString(); } } // 主函数示例 public static void main(String[] args) { Polynomial poly1 = new Polynomial(...); // 用户输入第一个多项式的系数 Polynomial poly2 = new Polynomial(...); // 用户输入第二个多项式的系数 Polynomial sum = poly1.add(poly2); System.out.println("Result: " + sum); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值