书生大模型第四期——基础第三关:提示工程(Prompt Engineering)

LangGPT结构化提示词

LangGPT 是 Language For GPT-like LLMs 的简称,中文名为结构化提示词。LangGPT 是一个帮助你编写高质量提示词的工具,理论基础是我们提出的一套模块化、标准化的提示词编写方法论——结构化提示词。我们希望揭开提示工程的神秘面纱,为大众提供一套可操作、可复现的提示词方法论、工具和交流社群。我们的愿景是让人人都能写出高质量提示词。LangGPT社区文档https://langgpt.ai

 LangGPT结构

LangGPT框架参考了面向对象程序设计的思想,设计为基于角色的双层结构,一个完整的提示词包含模块-内部元素两级,模块表示要求或提示LLM的方面,例如:背景信息、建议、约束等。内部元素为模块的组成部分,是归属某一方面的具体要求或辅助信息,分为赋值型和方法型。

编写技巧

  • 构建全局思维链

    对大模型的 Prompt 应用CoT 思维链方法的有效性是被研究和实践广泛证明了的。首先可以根据场景选择基本的模块。

  • 一个好的结构化 Prompt 模板,某种意义上是构建了一个好的全局思维链。 如 LangGPT 中展示的模板设计时就考虑了如下思维链:

    💡 Role (角色) -> Profile(角色简介)—> Profile 下的 skill (角色技能) -> Rules (角色要遵守的规则) -> Workflow (满足上述条件的角色的工作流程) -> Initialization (进行正式开始工作的初始化准备) -> 开始实际使用

    一个好的 Prompt ,内容结构上最好也是逻辑清晰连贯的。结构化 prompt 方法将久经考验的逻辑思维链路融入了结构中,大大降低了思维链路的构建难度。

    构建 Prompt 时,不妨参考优质模板的全局思维链路,熟练掌握后,完全可以对其进行增删改留调整得到一个适合自己使用的模板。例如当你需要控制输出格式,尤其是需要格式化输出时,完全可以增加 Output 或者 OutputFormat 这样的模块。

  • 保持上下文语义一致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zaczz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值