34. Find First and Last Position of Element in Sorted Array [LeetCode]

/**************************************************************************
 * 
 * 34. [Find First and Last Position of Element in Sorted Array]
 * (https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/)
 * 
 * Given an array of integers nums sorted in ascending order, 
 * find the starting and ending position of a given target value. 
 * If target is not found in the array, return [-1, -1].
 * 
 * You must write an algorithm with O(log n) runtime complexity.
 * 
 * Example 1:
 * Input: nums = [5,7,7,8,8,10], target = 8
 * Output: [3,4]
 * 
 * Example 2:
 * Input: nums = [5,7,7,8,8,10], target = 6
 * Output: [-1,-1]
 * 
 * Example 3:
 * Input: nums = [], target = 0
 * Output: [-1,-1]
 **************************************************************************/
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
//
//
/// Approch 1:  binary searches for target, then expand it
int *searchRange(int *nums, int numsSize, int target, int *returnSize) {
    if (NULL == returnSize) return NULL;
    *returnSize = 2;
    int *res = (int *)calloc(2, sizeof(int));
    res[0] = -1;
    res[1] = -1;
    if (NULL == nums || numsSize <=0 || target < nums[0] || target > nums[numsSize - 1])
        return res;

    int left = 0;
    int right = numsSize - 1;
    while (left < right) {
        int mid = (left + right) / 2;
        if (target == nums[mid]) {
            left = mid;
            right = mid;
        } else if (target > nums[mid]) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }

    if (target != nums[left]) return res;

    res[0] = left;
    res[1] = right;

    for (int i = left - 1; i >= 0; i--) {
        if (nums[i] != target) {
            res[0] = i + 1;
            break;
        } else {
            res[0]--;
        }
    }

    for (int i = right + 1; i < numsSize; i++) {
        if (nums[i] != target) {
            res[1] = i - 1;
            break;
        } else {
            res[1]++;
        }
    }
    
    return res;
}

//
//
/// Approch 2: twice binary searches
int *searchRange(int *nums, int numsSize, int target, int *returnSize) {
    if (NULL == returnSize) 
        return NULL;

    *returnSize = 2;
    int *res = (int *)calloc(2, sizeof(int));
    res[0] = -1;
    res[1] = -1;
    if (NULL == nums || numsSize <= 0 || target < nums[0] || target > nums[numsSize - 1])
        return res;

    int left = 0;
    int right = numsSize - 1;
    // Search for the left one
    while (left < right) {
        int mid = (left + right) / 2;
        if (nums[mid] < target)
            left = mid + 1;
        else
            right = mid;
    }
    if (nums[left] != target) 
    return res;

    res[0] = left;
    right = numsSize - 1;
    // Search for the right one
    while (left < right) {
        int mid = (left + right) / 2 + 1;  //  Make mid biased to the right
        if (nums[mid] > target)
            right = mid - 1; 
        else
            left = mid;   // So that this won't make the search range stuck.
    }
    res[1] = right;
    return res;
}

//
//
/// Approch 3: STL
class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        if (nums.size() == 0)return { -1,-1 };
        if (target<nums[0] || target>nums[nums.size() - 1])return {-1, -1};
        const int l = distance(nums.begin(), lower_bound(nums.begin(), nums.end(), target));
        const int u = distance(nums.begin(), prev(upper_bound(nums.begin(), nums.end(), target)));
        if (nums[l] != target) // not found
            return vector<int> {-1, -1};
        else
            return vector<int> {l, u};
    }
};

 

### 解决方案 LeetCode34 题名为 **"Find First and Last Position of Element in Sorted Array"**,其目标是在已排序数组中查找某个目标值的第一个和最后一个位置。如果目标值不存在于数组中,则返回 `[-1, -1]`。 以下是该问题的一种高效解决方案,基于二分查找方法: #### 方法概述 此问题可以通过两次二分查找来解决:一次用于找到目标值的起始索引,另一次用于找到结束索引。这种方法的时间复杂度为 \(O(\log n)\),其中 \(n\) 是输入数组的长度[^2]。 #### 实现代码 以下是一个完整的 C++ 实现: ```cpp #include <vector> using namespace std; class Solution { public: int findBound(const vector<int>& nums, int target, bool isFirst) { int left = 0; int right = nums.size() - 1; int boundIndex = -1; // 初始化边界索引为 -1 while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] == target) { boundIndex = mid; // 更新当前匹配到的位置 if (isFirst) { // 如果寻找的是第一个位置 right = mid - 1; // 继续向左搜索 } else { // 否则继续向右搜索 left = mid + 1; } } else if (nums[mid] > target) { right = mid - 1; } else { left = mid + 1; } } return boundIndex; } vector<int> searchRange(vector<int>& nums, int target) { int firstPos = findBound(nums, target, true); // 查找第一个位置 if (firstPos == -1) { return {-1, -1}; // 若未找到目标值,直接返回 [-1, -1] } int lastPos = findBound(nums, target, false); // 查找最后一个位置 return {firstPos, lastPos}; } }; ``` 上述代码定义了一个辅助函数 `findBound` 来执行二分查找操作,并通过布尔参数 `isFirst` 控制是查找左侧还是右侧边界[^3]。 --- #### 复杂度分析 - 时间复杂度:\(O(\log n)\),因为每次迭代都将搜索范围减半。 - 空间复杂度:\(O(1)\),仅使用了常量级额外空间[^4]。 --- ### 测试案例 为了验证代码的有效性,可以运行以下测试用例: ```cpp int main() { Solution sol; vector<int> test1 = {5,7,7,8,8,10}; int target1 = 8; auto result1 = sol.searchRange(test1, target1); cout << "[" << result1[0] << ", " << result1[1] << "]" << endl; // 输出 [3, 4] vector<int> test2 = {5,7,7,8,8,10}; int target2 = 6; auto result2 = sol.searchRange(test2, target2); cout << "[" << result2[0] << ", " << result2[1] << "]" << endl; // 输出 [-1, -1] vector<int> test3 = {}; int target3 = 0; auto result3 = sol.searchRange(test3, target3); cout << "[" << result3[0] << ", " << result3[1] << "]" << endl; // 输出 [-1, -1] return 0; } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luuyiran

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值