~素数数目~~~~区间筛法(埃氏筛法)

题目描述(这里可以点哦)

给定区间[L,R],计算区间素数个数。
输入
输入两个整数L,R(1<=L<=R<=10^12,R-L<=1000000)
输出
输出一行表示区间素数的个数
样例输入 Copy
2 11
样例输出 Copy
5

素数个数问题,一般就是用埃氏筛法(复杂度O(nloglogn)),这题自然也不例外,具体思路如下:
第一步,用埃氏筛法得到1 ~ R1/2之间的全部素数;
第二步,用第一步得到的素数表把区间 [ L,R ]中的所有合数筛去;
第三部,统计剩下的素数个数;

事实上第一步和第二步是放在一起进行的,代码如下:

#include<cstdio>

using namespace std;

typedef long long LL;
const int N = 1e6+1;

bool f[N], t[N];//需要筛两个区间

LL S_sieve(LL l,LL r){//区间筛法    
    int sum = 0;    //统计L~R内合数的个数
	for(LL i = 2; i * i <= r; ++ i){
		//筛选2~sqrt(r)之间的素数 
		if (f[i]) continue;
		for(LL j = i * i; i <= 1000 && j * j <= r; j += i){
			f[j] = true;
		}
		//用筛选出的质数筛去区间l~r的合数 
        LL s = (l + i - 1) / i;
		if (i > s) s = i;       //保守i*i 
		for(LL j = s * i; j <= r; j += i){
            if (t[j - l + 1]) continue;
			t[j - l + 1] = true;
            sum ++;
		}
	}	
    if (l == 1) sum ++; //排除1
    sum = r - l + 1 - sum; //得到质数个数
	return sum;
}

int main(){
    LL L, R;
	scanf("%lld%lld", &L, &R);
    printf("%lld", S_sieve(L, R));
	return 0;
}

上完体育课,小 T 同学去校园超市买了瓶水,喝完后就直接去机房上编程课了,给创 新实验班上编程课的 Q 教练曾经培养出过世界冠军金斌大神,这可是小 T 和他的小伙伴们 的偶象啊! 小 T 同学从小学起就一直在金斌学长亲手开发的在线评测系统上提交程序,一 想起小学编程课眼前立刻浮现出 Q 教练的亲切笑容,想起自己初学编程时有些单词如 continue 等总是记不住,每当遇到这种情况 Q 教练总会不厌其烦地拼给自己听。 自从进入 初三后小 T 已经有很久没写程序了,也很久没见到和蔼可亲的 Q 教练了,今天这节课来得 太及时了,想到这里小 T 不由加快了脚步,走进机房,只见一阵凉风拍面而来,瞬间让人 神清气爽,原来 Q 教练知道我们上一节是体育课,早开好了空调在等我们了。 今天的编程课 Q 教练一上来就抛给了大家一个高端大气的问题:编程寻找给定范围内的半质数。半质 数小 T 还是第一次听说,这个问题明显比找质数档次高多了! 质数的定义小 T 早在小学就知道了. 质数又称素数,指在大于 1 的自然数中,只能被 1 和本身整除的数, 也可定 义为只有 1 和本身两个因数的数。而半质数的定义是这样的:若对于一个正整数 N,恰好能够分解成两个质数的乘积,它就被称为半质数。比如,4=22,15=35 都是半质数,12 不是半质数,它的质因子分解式为 12=223,分解出的质数共有 3 个,其中有 2 个质数 2, 1 个质数 3。 输入描述 输入数据仅有一行包含两个用空格隔开的正整数 S 和 E,其中 2≤S≤E<5000000。 输出描述 用c++输出数据仅有一行包含一个整数表示在 S 到 E 之间共有多少个半质数
03-09
排序算法 快速排序 ⭐⭐⭐⭐ 归并排序 ⭐⭐⭐ 桶排序 ⭐⭐(特殊场景) 注:冒泡/选择/插入排序极少直接考察,但需理解原理 搜索算法 DFS/BFS ⭐⭐⭐⭐⭐(90%比赛必考) 记忆化搜索 ⭐⭐⭐⭐(DP优化常用) 剪枝技巧 ⭐⭐⭐(DFS优化) 动态规划 一维普通DP(爬楼梯/打家劫舍类) ⭐⭐⭐⭐ 背包DP(01背包/完全背包) ⭐⭐⭐ 树形DP(最近公共祖先相关) ⭐⭐ 数据结构 栈(表达式计算/括号匹配) ⭐⭐⭐ 队列(BFS标准实现) ⭐⭐⭐ 并查集 ⭐⭐⭐⭐(连通性问题) 堆(优先队列实现贪心) ⭐⭐⭐ 树状数组 ⭐⭐(区间和问题) 图论 最小生成树(Prim/Kruskal) ⭐⭐⭐ 单源最短路(Dijkstra) ⭐⭐⭐拓扑排序 ⭐⭐ 数学与数论 初等数论(GCD/质数判断/快速幂) ⭐⭐⭐⭐ 排列组合 ⭐⭐⭐ 模运算与逆元 ⭐⭐ 其他重点 二分查找(边界处理) ⭐⭐⭐⭐ 贪心算法(区间调度/ Huffman树) ⭐⭐⭐ 双指针技巧 ⭐⭐⭐ 这是CSDN给出的高频算法 1. 搜索算法(DFS/BFS)** [⭐️⭐️⭐️⭐️⭐️] - **出现场景**:几乎每年必考,如迷宫路径、连通性问题、排列组合枚举等。 - **真题示例**: - 第七届“剪邮票”问题(DFS遍历连通性); - 第十二届“砝码称重”隐含记忆化搜索思想; - 第十四届“接龙数列”(字符串搜索与剪枝)。 --- ### **2. 动态规划(DP)** [⭐️⭐️⭐️⭐️] - **高频子类**: - **背包DP**:如第十二届“砝码称重”(01背包变种); - **线性DP**:第七届“煤球数目”(递推问题)、第十四届“接龙数列”(状态转移); - **树形DP**:偶有涉及(如路径计数问题)。 --- ### **3. 贪心算法** [⭐️⭐️⭐️⭐️] - **高频题型**:区间调度、策略选择。 - **真题示例**: - 第四届“翻硬币”(相邻翻转策略); - 第九届“乘积最大”(双指针结合正负分析)。 --- ### **4. 数学与数论** [⭐️⭐️⭐️⭐️] - **高频内容**: - **初等数论**:因数分解、模运算(第十二届“货物摆放”); - **排列组合**:第七届“凑算式”全排列问题; - **容斥原理**:整数分解问题(第十二届第二场D题)。 --- ### **5. 排序与二分查找** [⭐️⭐️⭐️] - **高频应用**: - **快速排序**:第七届填空题直接考察代码补全; - **二分答案**:第十二届“直线”问题(排序去重优化)。 --- ### **6. 数据结构** [⭐️⭐️⭐️] - **高频结构**: - **栈与队列**:模拟题中常见(如第四届“翻硬币”隐含栈思想); - **并查集**:图论连通性问题(如最小生成树); - **树状数组/线段树**:区间查询问题(近年偶有涉及)。 --- ### **7. 图论** [⭐️⭐️⭐️] - **高频算法**: - **最短路径(Dijkstra/Floyd)**:第十二届“路径”直接考察; - **最小生成树(Kruskal/Prim)**:第十二届第二场“城邦”问题; - **拓扑排序**:第十四届“飞机降落”依赖关系问题。 二届“货物摆放”); - **排列组合**:第七届“凑算式”全排列问题; - **容斥原理**:整数分解问题(第十二届第二场D题)。 --- ### **5. 排序与二分查找** [⭐️⭐️⭐️] - **高频应用**: - **快速排序**:第七届填空题直接考察代码补全; - **二分答案**:第十二届“直线”问题(排序去重优化)。 --- ### **6. 数据结构** [⭐️⭐️⭐️] - **高频结构**: - **栈与队列**:模拟题中常见(如第四届“翻硬币”隐含栈思想); - **并查集**:图论连通性问题(如最小生成树); - **树状数组/线段树**:区间查询问题(近年偶有涉及)。 --- ### **7. 图论** [⭐️⭐️⭐️] - **高频算法**: - **最短路径(Dijkstra/Floyd)**:第十二届“路径”直接考察; - **最小生成树(Kruskal/Prim)**:第十二届第二场“城邦”问题; - **拓扑排序**:第十四届“飞机降落”依赖关系问题。 这是deepseek给我的哪个准确点呢,因为不一样所以请你再回顾一下十六届以前广东省b组的高频算法按出现算法频率,给我输出一下
最新发布
03-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值