五子棋的蒙特卡洛树搜索(MCTS)实现 - Java版

五子棋的蒙特卡洛树搜索(MCTS)实现 - Java版

下面是一个完整的Java实现,使用蒙特卡洛树搜索算法来实现五子棋AI。这个实现包含了MCTS的核心组件:选择(Selection)、扩展(Expansion)、模拟(Simulation)和反向传播(Backpropagation)。

import java.util.*;

public class GomokuMCTS {
    // 棋盘大小
    private static final int BOARD_SIZE = 15;
    // 玩家标记
    private static final int EMPTY = 0;
    private static final int HUMAN = 1;
    private static final int AI = 2;
    // MCTS参数
    private static final int SIMULATION_TIMES = 10000;
    private static final double EXPLORATION_FACTOR = Math.sqrt(2);
    
    // 节点类表示MCTS树中的节点
    private static class Node {
        int[][] board;
        int lastMovePlayer; // 最后下棋的玩家
        int lastMoveX, lastMoveY; // 最后下的位置
        Node parent;
        List<Node> children;
        int visitCount;
        double winScore;
        
        public Node(int[][] board, int lastMovePlayer, int lastMoveX, int lastMoveY, Node parent) {
            this.board = copyBoard(board);
            this.lastMovePlayer = lastMovePlayer;
            this.lastMoveX = lastMoveX;
            this.lastMoveY = lastMoveY;
            this.parent = parent;
            this.children = new ArrayList<>();
            this.visitCount = 0;
            this.winScore = 0;
        }
        
        // 复制棋盘
        private int[][] copyBoard(int[][] original) {
            int[][] copy = new int[BOARD_SIZE][BOARD_SIZE];
            for (int i = 0; i < BOARD_SIZE; i++) {
                System.arraycopy(original[i], 0, copy[i], 0, BOARD_SIZE);
            }
            return copy;
        }
        
        // 获取所有可能的子节点(所有合法移动)
        public List<Node> getAllPossibleNodes(int player) {
            List<Node> possibleNodes = new ArrayList<>();
            
            // 简单策略:只考虑已有棋子周围的空位
            Set<String> considered = new HashSet<>();
            for (int i = 0; i < BOARD_SIZE; i++) {
                for (int j = 0; j < BOARD_SIZE; j++) {
                    if (board[i][j] != EMPTY) {
                        // 检查周围3x3区域
                        for (int dx = -2; dx <= 2; dx++) {
                            for (int dy = -2; dy <= 2; dy++) {
                                int x = i + dx;
                                int y = j + dy;
                                if (x >= 0 && x < BOARD_SIZE && y >= 0 && y < BOARD_SIZE 
                                        && board[x][y] == EMPTY && !considered.contains(x + "," + y)) {
                                    considered.add(x + "," + y);
                                    int[][] newBoard = copyBoard(board);
                                    newBoard[x][y] = player;
                                    possibleNodes.add(new Node(newBoard, player, x, y, this));
                                }
                            }
                        }
                    }
                }
            }
            
            // 如果棋盘为空,选择中心点
            if (considered.isEmpty()) {
                int center = BOARD_SIZE / 2;
                int[][] newBoard = copyBoard(board);
                newBoard[center][center] = player;
                possibleNodes.add(new Node(newBoard, player, center, center, this));
            }
            
            return possibleNodes;
        }
        
        // 随机选择子节点
        public Node getRandomChildNode() {
            int randomIndex = (int) (Math.random() * children.size());
            return children.get(randomIndex);
        }
        
        // 计算UCT值(Upper Confidence Bound for Trees)
        public double getUCTValue() {
            if (visitCount == 0) {
                return Double.MAX_VALUE;
            }
            return (winScore / visitCount) + EXPLORATION_FACTOR * Math.sqrt(Math.log(parent.visitCount) / visitCount);
        }
        
        // 获取最佳子节点(基于UCT值或胜率)
        public Node getBestChild() {
            return Collections.max(children, Comparator.comparing(c -> c.visitCount));
        }
    }
    
    // 查找最佳移动
    public static int[] findBestMove(int[][] board, int player) {
        Node rootNode = new Node(board, player == HUMAN ? AI : HUMAN, -1, -1, null);
        
        // MCTS循环
        for (int i = 0; i < SIMULATION_TIMES; i++) {
            // 1. 选择阶段
            Node promisingNode = selectPromisingNode(rootNode);
            
            // 2. 扩展阶段
            if (!isTerminal(promisingNode.board)) {
                expandNode(promisingNode, player);
            }
            
            // 3. 模拟阶段
            Node nodeToExplore = promisingNode;
            if (promisingNode.children.size() > 0) {
                nodeToExplore = promisingNode.getRandomChildNode();
            }
            int playoutResult = simulateRandomPlayout(nodeToExplore, player);
            
            // 4. 反向传播阶段
            backPropagation(nodeToExplore, playoutResult);
        }
        
        // 选择访问次数最多的子节点
        Node bestNode = rootNode.getBestChild();
        return new int[]{bestNode.lastMoveX, bestNode.lastMoveY};
    }
    
    // 选择阶段 - 从根节点开始选择最有潜力的节点
    private static Node selectPromisingNode(Node rootNode) {
        Node node = rootNode;
        while (node.children.size() != 0) {
            node = findBestNodeWithUCT(node);
        }
        return node;
    }
    
    // 使用UCT算法选择最佳子节点
    private static Node findBestNodeWithUCT(Node node) {
        int parentVisit = node.visitCount;
        return Collections.max(node.children, 
            Comparator.comparing(child -> (child.winScore / child.visitCount) + 
                EXPLORATION_FACTOR * Math.sqrt(Math.log(parentVisit) / child.visitCount)));
    }
    
    // 扩展阶段 - 为节点添加所有可能的子节点
    private static void expandNode(Node node, int player) {
        List<Node> possibleNodes = node.getAllPossibleNodes(player);
        for (Node possibleNode : possibleNodes) {
            node.children.add(possibleNode);
        }
    }
    
    // 模拟阶段 - 随机模拟游戏直到结束
    private static int simulateRandomPlayout(Node node, int player) {
        int[][] tempBoard = node.copyBoard(node.board);
        int boardStatus = isTerminal(tempBoard);
        int currentPlayer = player;
        
        // 如果当前节点已经是终局
        if (boardStatus != Integer.MIN_VALUE) {
            return boardStatus;
        }
        
        // 随机下棋直到游戏结束
        while (true) {
            boardStatus = isTerminal(tempBoard);
            if (boardStatus != Integer.MIN_VALUE) {
                return boardStatus;
            }
            
            // 获取所有合法移动
            List<int[]> availableMoves = getAvailableMoves(tempBoard);
            if (availableMoves.isEmpty()) {
                return 0; // 平局
            }
            
            // 随机选择一个移动
            int[] randomMove = availableMoves.get((int) (Math.random() * availableMoves.size()));
            tempBoard[randomMove[0]][randomMove[1]] = currentPlayer;
            currentPlayer = currentPlayer == HUMAN ? AI : HUMAN;
        }
    }
    
    // 获取所有合法移动
    private static List<int[]> getAvailableMoves(int[][] board) {
        List<int[]> moves = new ArrayList<>();
        
        // 简单策略:只考虑已有棋子周围的空位
        Set<String> considered = new HashSet<>();
        for (int i = 0; i < BOARD_SIZE; i++) {
            for (int j = 0; j < BOARD_SIZE; j++) {
                if (board[i][j] != EMPTY) {
                    // 检查周围3x3区域
                    for (int dx = -2; dx <= 2; dx++) {
                        for (int dy = -2; dy <= 2; dy++) {
                            int x = i + dx;
                            int y = j + dy;
                            if (x >= 0 && x < BOARD_SIZE && y >= 0 && y < BOARD_SIZE 
                                    && board[x][y] == EMPTY && !considered.contains(x + "," + y)) {
                                considered.add(x + "," + y);
                                moves.add(new int[]{x, y});
                            }
                        }
                    }
                }
            }
        }
        
        // 如果棋盘为空,选择中心点
        if (moves.isEmpty()) {
            int center = BOARD_SIZE / 2;
            moves.add(new int[]{center, center});
        }
        
        return moves;
    }
    
    // 反向传播阶段 - 更新从叶子节点到根节点的所有节点统计信息
    private static void backPropagation(Node nodeToExplore, int playoutResult) {
        Node tempNode = nodeToExplore;
        while (tempNode != null) {
            tempNode.visitCount++;
            if ((tempNode.lastMovePlayer == AI && playoutResult == AI) || 
                (tempNode.lastMovePlayer == HUMAN && playoutResult == HUMAN)) {
                tempNode.winScore += 1;
            } else if (playoutResult == 0) {
                tempNode.winScore += 0.5;
            }
            tempNode = tempNode.parent;
        }
    }
    
    // 检查游戏是否结束(返回获胜玩家或MIN_VALUE表示未结束)
    private static int isTerminal(int[][] board) {
        // 检查所有行
        for (int i = 0; i < BOARD_SIZE; i++) {
            for (int j = 0; j < BOARD_SIZE - 4; j++) {
                if (board[i][j] != EMPTY && 
                    board[i][j] == board[i][j+1] && 
                    board[i][j] == board[i][j+2] && 
                    board[i][j] == board[i][j+3] && 
                    board[i][j] == board[i][j+4]) {
                    return board[i][j];
                }
            }
        }
        
        // 检查所有列
        for (int j = 0; j < BOARD_SIZE; j++) {
            for (int i = 0; i < BOARD_SIZE - 4; i++) {
                if (board[i][j] != EMPTY && 
                    board[i][j] == board[i+1][j] && 
                    board[i][j] == board[i+2][j] && 
                    board[i][j] == board[i+3][j] && 
                    board[i][j] == board[i+4][j]) {
                    return board[i][j];
                }
            }
        }
        
        // 检查对角线(左上到右下)
        for (int i = 0; i < BOARD_SIZE - 4; i++) {
            for (int j = 0; j < BOARD_SIZE - 4; j++) {
                if (board[i][j] != EMPTY && 
                    board[i][j] == board[i+1][j+1] && 
                    board[i][j] == board[i+2][j+2] && 
                    board[i][j] == board[i+3][j+3] && 
                    board[i][j] == board[i+4][j+4]) {
                    return board[i][j];
                }
            }
        }
        
        // 检查对角线(右上到左下)
        for (int i = 0; i < BOARD_SIZE - 4; i++) {
            for (int j = 4; j < BOARD_SIZE; j++) {
                if (board[i][j] != EMPTY && 
                    board[i][j] == board[i+1][j-1] && 
                    board[i][j] == board[i+2][j-2] && 
                    board[i][j] == board[i+3][j-3] && 
                    board[i][j] == board[i+4][j-4]) {
                    return board[i][j];
                }
            }
        }
        
        // 检查是否还有空位
        for (int i = 0; i < BOARD_SIZE; i++) {
            for (int j = 0; j < BOARD_SIZE; j++) {
                if (board[i][j] == EMPTY) {
                    return Integer.MIN_VALUE; // 游戏未结束
                }
            }
        }
        
        return 0; // 平局
    }
    
    // 打印棋盘
    public static void printBoard(int[][] board) {
        System.out.print("   ");
        for (int j = 0; j < BOARD_SIZE; j++) {
            System.out.printf("%2d ", j);
        }
        System.out.println();
        
        for (int i = 0; i < BOARD_SIZE; i++) {
            System.out.printf("%2d ", i);
            for (int j = 0; j < BOARD_SIZE; j++) {
                char c = '.';
                if (board[i][j] == HUMAN) c = 'X';
                else if (board[i][j] == AI) c = 'O';
                System.out.printf("%2c ", c);
            }
            System.out.println();
        }
    }
    
    // 主函数 - 简单的控制台游戏
    public static void main(String[] args) {
        int[][] board = new int[BOARD_SIZE][BOARD_SIZE];
        Scanner scanner = new Scanner(System.in);
        int currentPlayer = HUMAN;
        
        while (true) {
            printBoard(board);
            
            if (currentPlayer == HUMAN) {
                System.out.println("你的回合(X), 输入行和列(例如: 7 7):");
                int x = scanner.nextInt();
                int y = scanner.nextInt();
                
                if (x < 0 || x >= BOARD_SIZE || y < 0 || y >= BOARD_SIZE || board[x][y] != EMPTY) {
                    System.out.println("无效的移动,请重试!");
                    continue;
                }
                
                board[x][y] = HUMAN;
            } else {
                System.out.println("AI思考中...");
                int[] bestMove = findBestMove(board, AI);
                board[bestMove[0]][bestMove[1]] = AI;
                System.out.println("AI下在: " + bestMove[0] + " " + bestMove[1]);
            }
            
            // 检查游戏是否结束
            int result = isTerminal(board);
            if (result == HUMAN) {
                printBoard(board);
                System.out.println("你赢了!");
                break;
            } else if (result == AI) {
                printBoard(board);
                System.out.println("AI赢了!");
                break;
            } else if (result == 0) {
                printBoard(board);
                System.out.println("平局!");
                break;
            }
            
            currentPlayer = currentPlayer == HUMAN ? AI : HUMAN;
        }
        
        scanner.close();
    }
}

代码说明

  1. MCTS核心组件:

    • Node类表示搜索树中的节点,包含棋盘状态、统计信息等
    • findBestMove是主入口,执行MCTS算法
    • 四个阶段:选择、扩展、模拟、反向传播
  2. 游戏逻辑:

    • 15x15的五子棋棋盘
    • 检查五子连珠的胜利条件
    • 简单的移动生成策略(只考虑已有棋子周围的空位)
  3. 优化点:

    • 使用UCT算法平衡探索和利用
    • 在扩展阶段限制考虑的移动数量(只考虑已有棋子周围的空位)
    • 随机模拟使用快速评估
  4. 使用方法:

    • 运行main方法开始人机对战
    • 人类玩家输入坐标(如"7 7")下棋
    • AI会自动计算最佳移动并下棋

这个实现可以根据需要进行优化,例如添加更智能的模拟策略、并行化MCTS搜索、或者使用神经网络来指导搜索等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值