在当今大模型迅猛发展的环境下,人工智能的应用越来越广泛。然而,这些大模型的背后隐藏着更为深厚的基础技术——传统机器学习和神经网络。理解这些基础技术,不仅能够帮助我更好地使用大模型,还能为我提供创新和解决实际问题的能力。因此,在这个AI迅猛发展的时代,掌握传统机器学习和神经网络显得尤为重要。
在近期的全国两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。技术革命正在从“互联网+”向“人工智能+”逐步迈进,我将迎来新一轮技术革新和人才需求的增长。毫无疑问,AI 工程师将是未来最紧俏的岗位。
随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在各类任务中表现出卓越的性能,吸引了广泛关注。这些大模型展示了在自然语言处理、计算机视觉等领域的巨大潜力。然而,在这种背景下,传统的机器学习、深度学习和神经网络依然具有不可替代的重要性。对于想要进入AI领域的新手或转行AI的程序员来说,是否直接学习大模型就是最佳选择呢?
在关注大模型发展趋势的这一年多的时间里,我一直再关注着大型模型的发展趋势并一直在进行传统机器学习的步道,那么从传统机器学习到深度学习与神经网络学习的学习路径与直接学习大模型的对比,为何前者更为合适?
一、大模型的局限性
尽管大模型在许多任务中表现出色,但它们也存在诸多局限性:
-
资源消耗高:大模型的训练和推理需要巨大的计算资源和能量消耗,不适用于所有场景,这对于个人学习或资源受限的情况下可能是一个不小的挑战。相比之下,传统机器学习模型在资源受限的环境中更具优势。
-
数据需求量大:大模型的有效性依赖于大量高质量的数据,而在许多实际应用中,数据获取和标注是一个巨大的挑战,这对于新手来说可能难以获取或者标注。传统的机器学习方法在小数据集和有限标签的情况下仍能表现出色。
-
透明性和可解释性:大模型通常被视为“黑箱”,难以解释其内部工作机制,这使得新手难以理解模型的决策过程和调试模型。而传统的机器学习方法,如决策树和线性回归,提供了更高的可解释性,有助于模型的调试和优化。
-
应用场景的限制:大模型虽然在通用任务中表现优异,但在一些特定领域和细分任务上,传统方法可能更有效。例如,在医疗诊断和金融预测中,专业知识与传统算法的结合往往能带来更好的效果。
二、传统机器学习的优势
-
基础理论的扎实性:传统机器学习和神经网络方法奠定了现代人工智能的基础。传统机器学习到深度学习与神经网络学习的学习路径能够帮助新手建立扎实的基础知识。从简单的线性回归和逻辑回归开始,逐步过渡到复杂的神经网络模型,理解这些方法有助于更深入地掌握新兴技术的本质,为后续学习打下坚实基础。
-
多样化的应用:传统机器学习到深度学习与神经网络学习的学习路径涵盖了更广泛的技术和应用场景。传统方法在各个领域都有广泛的应用,从图像处理到时间序列分析,无所不包。这些方法提供了丰富的工具箱,可以根据具体问题选择最合适的技术。新手可以根据兴趣和需求选择适合自己的学习方向,从而更好地应用所学知识。
-
灵活性与可定制性:传统机器学习模型和深度学习框架提供了更高的灵活性,允许研究人员和工程师根据需求进行调整和优化。例如,卷积神经网络(CNN)在图像识别中的成功就是传统神经网络方法的延续和发展。
-
高效的学习曲线:相比直接学习大模型,从传统机器学习开始学习,学习曲线更平缓,更适合新手逐步掌握复杂的AI技术。这种渐进式学习能够减少学习压力,提高学习效率。掌握传统机器学习和深度学习技术有助于快速理解和上手更复杂的大模型。这些技术提供了必备的数学和算法基础,使学习者能够更有效地理解和应用大模型。
-
理解更深入:逐步学习传统机器学习到深度学习与神经网络,能够更深入地理解AI技术的内在原理。新手不仅能够了解模型的工作原理,还能够深入研究模型的数学基础和算法原理。
与直接学习大模型相比,传统机器学习到深度学习与神经网络学习的学习路径更能够帮助新手建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。因此,对于想要进入AI领域的新手或转行AI的程序员来说,选择这样的学习路径可能更为合适。
三、学习传统方法的必要性
-
培养问题解决能力:传统机器学习方法强调特征工程和模型选择,这培养了从业者的实际问题解决能力和数据分析能力。这些技能对于构建有效的AI解决方案至关重要。
-
推动创新和发展:许多现代大模型的进步源于对传统方法的创新和改进。例如,Transformer模型的提出正是基于对RNN和CNN的局限性的认识和改进。了解传统方法有助于发现新的改进方向。
-
跨领域知识的融合:在实际应用中,AI往往需要与其他领域知识相结合。传统机器学习方法具有较强的跨领域适应性,能够与其他学科的方法论和知识体系进行有机结合。
-
应对多样化需求:不同应用场景对模型的需求各异,掌握多种技术手段有助于灵活应对。传统机器学习方法在许多特定任务中依然表现出色,可以有效补充大模型的不足。
四、想要进入AI领域:传统机器学习是最佳途径
-
全面建立基础:这一学习路径能够帮助新手建立扎实的基础知识,理解机器学习和神经网络的原理和算法,为后续学习大模型打下坚实基础。
-
渐进式学习:传统机器学习方法为新手提供了一个渐进式学习的路径,从简单的线性回归和逻辑回归开始,逐步过渡到复杂的深度学习模型,降低了学习的难度和门槛。
-
理论与实践并重:通过学习传统机器学习和深度学习方法,新手不仅能够理解算法的原理和数学基础,还能够通过实际项目的实践应用来加深理解和提升技能。
-
满足不同需求:传统机器学习方法和深度学习技术在不同领域和应用场景中都有广泛的应用,新手可以根据个人兴趣和职业目标选择最适合自己的学习路径,满足不同的需求。
在大模型广泛应用的时代,对于想要进入AI领域的新手或者是想要转行AI的程序员来说,从传统机器学习到深度学习与神经网络学习的学习路径更为合适。这一路径不仅能够帮助他们建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。
对比之下,直接学习大模型虽然能够在一定程度上快速掌握当下最前沿的技术,但其高资源消耗、数据需求量大、透明性差以及应用场景受限等局限性,对于新手来说可能会增加学习的难度和挑战。
因此,选择从传统机器学习到深度学习与神经网络学习的学习路径,不仅能够更好地理解AI技术的本质和原理,还能够为未来的学习和发展奠定坚实的基础。对于想要在AI领域取得长远成功的新手或者转行者来说,这样的学习路径更加可取。这一路径能够帮助他们建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。在这个过程中,持续学习、实践和探索是取得成功的关键。
AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起
1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程
第2章 大语言模型基础
2.1 Transformer 模型
嵌入表示层
注意力层
前馈层
残差连接与层归一化
编码器和解码器结构
2.2 生成式预训练语言模型 GPT
无监督预训练
有监督下游任务微调
基于 HuggingFace 的预训练语言模型实践
2.3 大语言模型结构
LLaMA 的模型结构
注意力机制优化
第3章 大语言模型基础
3.1 数据来源
通用数据
专业数据
3.2 数据处理
低质过滤
冗余去除
隐私消除
词元切分
3.3 数据影响分析
数据规模影响
数据质量影响
数据多样性影响
3.4 开源数据集合
Pile
ROOTS
RefinedWeb
SlimPajama
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第4章 分布式训练
4.1 分布式训练概述
4.2 分布式训练并行策略
-
数据并行
-
模型并行
-
混合并行
-
计算设备内存优化
4.3 分布式训练的集群架构
-
高性能计算集群硬件组成
-
参数服务器架构
-
去中心化架构
4.4 DeepSpeed 实践
-
基础概念
-
LLaMA 分布式训练实践
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第5章 有监督微调
5.1 提示学习和语境学习
提示学习
语境学习
5.2 高效模型微调
LoRA
LoRA 的变体
5.3 模型上下文窗口扩展
具有外推能力的位置编码
插值法
5.4 指令数据构建
手动构建指令
自动生成指令
开源指令数据集
5.5 Deepspeed-Chat SFT 实践
代码结构
数据预处理
自定义模型
模型训练
模型推
第6章 强化学习
6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践
第7章 大语言模型应用
7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化
第8章 大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践
总结
坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。
记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。
最后,不要忘记与同行交流和学习。AI大模型领域有许多优秀的专家和社区,他们可以为你提供宝贵的指导和建议。参加技术交流会、阅读论文、加入专业论坛,这些都是提升自己技术水平的好方法。
祝愿你在AI大模型的学习之旅中取得丰硕的成果,开启属于你的AI大模型时代!