b i = ∑ j = 1 n ( i , j ) c − d ∗ i d j d z j b_i=\sum_{j=1}^n(i,j)^{c-d}*i^dj^dz_j bi=j=1∑n(i,j)c−d∗idjdzj
b i i d = ∑ j = 1 n z j j d ( i , j ) c − d \frac{b_i}{i^d}=\sum_{j=1}^nz_jj^d(i,j)^{c-d} idbi=j=1∑nzjjd(i,j)c−d记 ( i , j ) = x , B i = b i i d , Z i = z i i d , f i ( d ) = ∑ ( i , j ) = d Z j , F i ( d ) = ∑ d ∣ ( i , j ) Z j (i,j)=x,B_i=\frac{b_i}{i^d},Z_i=z_ii^d,f_i(d)=\sum_{(i,j)=d}Z_j,F_i(d)=\sum_{d|(i,j)}Z_j (i,j)=