1.研究背景
在实际的大数据工程部署中,多个业务部门经常需要运行多个数据应用,在搭建Hadoop集群时,经常面临如何划分大数据集群及进行资源隔离的问题。另外,由于预算有限等原因,数据运维部门也有控制预算,减少大数据集群节点个数,同时保证重点业务性能等诉求。
现有大数据集群一般支持2种资源管理方式,包括物理多租和逻辑多租,分别介绍如下。在物理多租模式中,每个租户拥有自己的MRS集群,资源和数据物理隔离。它的特点如下:
- 租户间的资源完全物理隔离,隔离级别较高,租户间完全互不影响;但空闲资源无法供其他租户使用,存在资源浪费。
- 不同租户的数据在不同集群内,数据共享需要手工搬运数据,效率较低;
- 管理模式比较简单,对管理员技能要求相对较低;
- 运维管理工作量较大,需要维护多套集群。比如集群升级需要每个集群逐一升级。
在逻辑多租模式中,多个租户共用同一个集群,通过集群内的多租户安全体系,实现多租户之间的资源资源和权限管控。它的特点如下:
- 租户间的资源可以动态调配,A租户不使用的资源可供B租户使用,有助于提升平台的整体资源利用率;
- 不同租户间的数据在同一平台内,可通过权限放通实现数据的共享,数据免搬运;
- 对管理员技能要求高,要求熟悉各个多租户的特性与基本原理,合理进行多租户资源和权限的规划和分配;
- 运维管理工作量较小,一套集群统一管理。