Distinct Subsequences
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
例如:S="rabbbit",T="rabbit",则“ra_bbit" "rab_bit" rabb_it,一共三个(其中‘_’表示删除的字符)
解题思路:用经典的dp来解,构建一个二维数组table[i][j](其中T的长度为行,S的长度为列),每一个元素表示在T[0...i]、S[0...j]中的解决方案的个数,然后按照以下规则进行递推:
1)i=0,则table[i][j]=1。因为i=0它表示T为空,此时无论S为多少,都存在S=""的情况(删除S中所有字符)。
2)i>0,若T[i] != S[j], 则没有新的解决方案,矩阵依旧和以前一样:table[i][j] = table[i][j-1]
若T[i] == S[j],则有新的解决方案,其一,它包括table[i-1][j-1]方案的个数;其二,它还包括table[i][j-1]方案的个数(因为把S[j]删掉,它也应该具有和前者一样多的解决
方案);
因此,i>0时的解决方案一共有:table[i][j] = table[i-1][j-1] + table[i][j-1];
int numDistinct(string S, string T)
{
int m = T.length(), n = S.length();
if (m > n)
return 0;
int** table = new int *[m + 1];
for (int i = 0; i <= m; i++)
table[i] = new int[n+1];
for (int j = 0; j <= n; j++)
table[0][j] = 1;
for (int i = 1; i <= m; i++)
table[i][0] = 0;
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++)
{
if (T[i-1] != S[j-1])
table[i][j] = table[i][j - 1];
else
table[i][j] = table[i][j - 1] + table[i - 1][j - 1];
}
}
int res = table[m][n];
for (int i = 0; i <= m; i++)
delete[] table[i];
delete[] table;
return res;
}