LeetCode Unique Binary Search Trees I II
Ⅰ
第一题主要用到了数学推导的方法。令数组arr[i]表示i个节点时BST的数目。则arr[0]=arr[1]=1,arr[2] = 2.
对于已知的arr[0...n]求arr[n+1],此n+1个节点中有个是根节点,令它的左子树个数L(n),右子数节点个数R(n),则左子树有arr[L(n)]中情况,同样,右子数有arr[R(n)]中情况。则可以求得arr[n+1] = ∑(arr[L(n)] * arr[R(n)])
int numTrees(int n) {
int * arr = new int[n+1];
memset(arr, 0, (n+1)*sizeof(int));
arr[0] = 1;arr[1] = 1; arr[2] = 2;
if (n < 3)
return arr[n];
for (int i = 3; i <= n; i++)
{
for (int j = 0; j < i; j++)
{
arr[i] += (arr[j] * arr[i - 1 - j]);
}
}
int res = arr[n];
delete arr;
return arr[n];
}
Ⅱ
第二题主要方法是遍历节点(每个节点做一次顶点),然后分别建立其左右子树。
vector<TreeNode *> CreateTree(int start, int end)
{
vector<TreeNode*> res;
if (start > end)
{
res.push_back(NULL);
return res;
}
for (int i = start; i <= end; i++)
{
//遍历[start end],对每个节点i,都有一次成为头结点的机会,然后递归建立其左子树和右子树
vector<TreeNode*> left = CreateTree(start, i - 1);
vector<TreeNode*> right = CreateTree(i + 1, end);
//遍历i节点左子树的节点
for (int j = 0; j < left.size(); j++)
{
//遍历i节点右子数的节点
for (int k = 0; k < right.size(); k++)
{
//生成i节点,并给左右子树赋值
TreeNode * root = new TreeNode(i);
root->left = left[j];
root->right = right[k];
res.push_back(root);
}
}
}
return res;
}
vector<TreeNode *> generateTrees(int n)
{
return CreateTree(1, n);
}